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I. mTBODUCTION 

Early interest in the metalÇll) —vic-dioximes arose as a resailt of 

the fact that dimethylglyoxime came as close, perhaps, as any compound to 

being a specific analytical reagent. As a result, a large niomber of vic-

dioximes and their complexes with divalent transition metals have "been 

prepared and studied. These investigations have included spectral, 

magnetic, and solubility studies, and application of the law of mass 

action to equilibrium studies of chemicaJ. reactions in solution. 

More recently, structural investigations of several metal(ll)-vic-

dioxime complexes have been carried out using X-ray diffraction tech

niques. Many of these structural, determinations, while not particularly 

precise, have provided valuable information which has been used -co 

explain differences in the solubilities of several metal(II)-vic-dioximes 

in inert solvents. In addition, these investigations have confirmed the 

presence of short intramolecular hydrogen bonds in many of the complexes. 

Such bonds had been predicted to exist in the metal(II)-vic-dioximes on 

the basis of chemical information on the reactivities of the hydroxy 1 

hydrogen atoms in the complexes. Of particular interest were some 

copper(II)- and nickel(ll)-vic-dioximes which were thou^t to possess 

symmetric hydrogen bonds. 

The major part of this investigation consisted of the precise deter

mination of the crystal and molecular structures of copper dimethyl

glyoxime, deuterium substituted copper dimethylglyoxime, nickel ethyl-

methylglyoxime, and nickel dimethylglyoxime, in order to elucidate more 
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completely the nature of the hydrogen "bonding in these metalClll-vic-

dioximes. 

In addition, the hydrogen "bonding in a series of palladiTimClI)-vic-

dioximes vas examined by infrared spectroscopic techniques and "by 

chemical methods which involved the determination of the reactivity of 

the hydroxyl hydrogen atom in these complexes. 

Based on this investigation, a number of conclusions are drawn 

regarding the hydrogen "bonding in the metal(ll)-vic-dioximes, and the 

unusual stability of these complexes, and some additional investigations 

are proposed. 
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II. ABBREVIATIONS ADOPTED FOR MAIÏUSCRIPT 

Throughout this manuscript the v^-dioximes and their complexes will 

generally be referred to by abbreviation. Structural formulas, nomen

clature, and abbreviations for the vic-dioximes have been tabulated in 

Table 1. 

Table 1. Structures, nomenclature, and abbreviations for some vic-dioximes 

Structure 

Systematic name 

Trivial name 

Abbreviation 

HO 
\ 
IT 

syn-2,3-butanedionedioxime 

syn-dimethylglyoxime 

syn-DMG 

II 
CH3 — C — C —CH3 

\ 
OH 

OH OH amxihi-2,3-but anedionedioxime 

amphi-dimethylglyoxime 

amphi-DMG 

/ / 
N N 
II II 

CH3 — C—C—CH3 

CH 3—C—C—CH 3 

HO OH 
\ / 
N N 
II II 

anti-2,3-butanedionedioxime 

anti-dimethylglyoxime 

anti-DMG or DMG 

CH 3 — C—C—CH2CH3 

HO OH 
\ / 
N N 
II II 

2,3-pentanedionedioxime 

ethylmethylglyoxime 

EMG 
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Table 1. (Continued) 

Systematic name 

Structure Trivial name 

Abbreviation 

HC^ ^OH ethanedionedioxime 

H N glyoxime 

H—C—C—H G 

/ 1,2-cycloheptanedionedioxime 

\ ^ I heptoxime 

'OH Heptox 

1,2-cyclohexanedionedioxime 

nioxime 

Niox 

HO OH 1,2-diphenylethanedionedioxime 

N N a-benzildioxime 
1 1  I I  

0—C—C—0 a-Benzil 

HO OH 1,2-di(2-furyl) ethanedionedioxime 

N n a-furildioxime 

a-Furil 

Examples of the use of the abbreviations given above to describe the 

composition of any metal(II)-vic-dioxime follow: 
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1. NiCGÏz for nickel glyoxime or TaisCethanedionedioximato-ïï^,^') 

nickelCll)• 

2. CU(DMG)2 for copper dimethylglyoxime or 

bis (2,3-'butaiLedionedioximato-N_,N' ) copper(ll) . 

3. Pd(a-Ben2il)2 for palladium a-benzildioxime or 

bis (l ,2-diphenyleth.anedionedioximato-II) palladimiClI ). 

4. -d indicates deuteriim substitution of the oxime hydroxy 1 

hydrogen atoms. 

It should be pointed out that only the anti- isomer of a vic-dioxime 

forms the characteristic 2:1 complex with a divalent metal ion. On 

complex formation, each ligand loses a proton, and the resulting complexes 

are neutral in charge. The following structure is a generalized structur

al formula for a metal(II)-vic-dioxime complex: 

The substituents R and R' may or may not be the same, depending on the 

vic-dioxime, and they may also be part of the cyclic ring in one of the 

alicyclic vic-dioximes. The substituents may be oriented so as to give 

either a cis- or trans- configuration to the complex; a trans— config

uration has been shown. 

All other abbreviations used in this manuscript will be defined in 

the text or will conform to the abbreviations set forth in the American 

0—H—0 
i \ 

0 — H  —  0  
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Chemical Society publication "Handbook, for Authors of Papers in the 

Research. Journals of the American Chemical Society". 
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III. PURPOSE OF RESEARCH 

The piirpose of this research was to elucidate as congletely as 

possible the nature of the hydrogen bonding in the metalC.II) ̂vic-

dioximes. The hydrogen bonds in the vic-dioxime complexes of nickel Cll) 

play an important role in stabilizing the complexes^, thereby decreasing 

the extent of dissociation of the complexes in solution. Because the 

met al ( 11 )-vi c-di oximes are basically organic-type solutes (69) and as 

molecular species are quite insoluble in water, the formation of strong 

hydrogen bonds has the effect of decreasing the solubilities of these 

complexes relative to the solubilities they would have were no such bonds 

formed. The strengths of the hydrogen bonds in copper(II)- and 

palladium^II )-vic-dioximes have not been conclusively established. An 

understanding of the nature of the hydrogen bonds in these complexes 

could provide valuable information on the extent to which hydrogen bonds 

stabilize the copper(II)- and palladium(ll)- complexes, and aid in the 

future design of specific reagents. If the complexes of copper(II) and 

palladiumdl ), like those of nickel( II), are significantly stabilized by 

hydrogen bonding, then reagents which sterically permit, or even favor, 

the formation of short, strong intramolecular hydrogen bonds on 

complexation ought, in principle, to form very stable complexes. 

'The lack of reactivity of the hydroxyl hydrogen atoms in the nickel com
plexes is well documented, confirming the fact that the hydrogen bonds 
are strong. The formation of strong hydrogen bonds must necessarily 
stabilize the complexes. 
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B^drogen "bonds also play major roles in a great many chemical 

systems, and particularly in "biochemical systems. Further knowledge on 

the nature of the hydrogen bonding in the metal Çll ) -vic-dioximes would 

undoubtedly increase the understanding of this phenomenon in general, 

and should therefore be of more general interest. 
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IV. LITERATURE REVIEW 

Altkou^ the hydrogen bond is undoubtedly the most thoroughly 

studied of all chemical interactions, relatively little is known about 

the true nature of this interaction. No attempt will be made to sum

marize all of the existing literature on hydrogen bonding as there are 

several thorough reviews available to the interested reader. A short 

summary of the literature directly pertinent to this study follows. 

A. The Hydrogen Bond 

The large majority of the literature on hydrogen bonding can be 

separated into three general categories, l) theoretical studies, 

2) spectroscopic studies, and 3) structural studies, with a considerable 

amount of cross correlation between categories. 

1. Theory of hydrogen bonding 

Since the early, and inadequate, electrostatic model of hydrogen 

bonding, there have been several different theoretical approaches to the 

study of the hydrogen bond, including the use of semi-empirical or 

empirical potential functions, azid molecular orbital calculations. These 

studies have been extensively reviewed by Hadzi (38), Pimentel and 

McClellan (6l), Bratoz (13), Hamilton and Ibers (Ul), and Murthy and 

Rao (53). 

Perhaps of greatest utility have been the treatments of hydrogen 

bonding utilizing potential functions. Of these, the model of Lippincott 
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and Schxoeder C^5) "based on a potential, function for diatomic molecules 

has been the most widely used. This model", for linear OHO hydrogen 

bonds, predicts that as the 0—0 distance decreases, the OH stretching 

frequency will decrease because the 0-H bond is getting weaker as the 

H***0 hydrogen bond becomes stronger. This will occur up to the point 

where the bond becomes symmetrical, after which the frequency will 

increase as the 0-H bond becomes stronger. The point of minimum 

frequency was calculated by Lippincott and Schroeder to occur in the 

o 
region of 0 0 distances from 2.45-2.50 A. This means that a hydrogen 

o 
bond 2.53 A in length might have nearly the same stretching frequency 

as one 2.^5 A in length. The Lippincott-Schroeder potential for OHO 

hydrogen bonds allows the successful prediction of the dependence of 0-H 

distance, OH stretching frequency shift, and hydrogen bond energy on 

0 0 distance. 

Reid (65) used a sli^tly modified Lippincott-Schroeder potential to 

interpret the changes in infrared spectra and in lattice dimensions in 

hydrogen bonded crystals on deuteration. Reid concluded that the type 

of potential function proposed by Lippincott and Schroeder "provides an 

exceptionally good description of numerous hydroxy 1 compounds which form 

hydrogen bonds". 

Bundle (68) used two Lippincott-Schroeder potentials to describe 

the hydrogen bonding in short, strong hydrogen bonds and to explain the 

effects encountered in such bonds. Briefly, it had been found that for 

many short hydrogen bonds, deuterium substitution caused an elongation 

. O 
of the hydrogen bond. This increase sometimes amounts to 0.06 A or more. 
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Bundle described th.e OHO hydjrogen bond as being represented by the 

potential wells of two normal 0-H bonds being forced closer and closer 

together as the 0 0 distance decreases. Bundle pointed out that the 

zero point energy for deuterium is lower than that of hydrogen. As the 

potential wells are brought together, the barrier between the two wells 

becomes very small. At the same time, the number of vibrational levels 

below the barrier will decrease, and the separation of symmetric and 

asymmetric levels will increase. At sufficiently short 0 0 distances 

there will be at most one symmetric [and perhaps one asymmetric) 

vibrational level below the barrier. This level will lie deeper in the 

well for D than for H and as the 0 0 distance decreases the H will 

have a greater probability of being located near the center of the bond 

than the D. As the lowest H level approaches the top of the barrier the 

difference between the D and H distributions becomes marked. Thus, 

according to Bundle, the hydrogen density àt the center will attract 

both oxygens and lead to a shortening of the bond, while deuterium will 

have a lower density in the center of the bond and less effect. Hence, 

it is in just that region where the difference in hydrogen and 

deuterium density differs most that the abnormal isotope effect should 

be largest, with the OHO distance shorter than the ODO distance. 

Bundle predicted that this abnormal isotope effect should manifest 

itself most strongly in the range of 0 0 distances from 2.U9-2.56 &. 

Bundle also predicted that more direct physical evidence on the nature 

of short hydrogen bonds might be obtained by careful X-ray diffraction 

studies of the compounds involved. One should thus be able to 
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distinguish between single and double well distributions in short hydro

gen bonds by measuring the isotope effect upon deuterium substitution. 

2. Spectroscopic studies, of hydrogen bonding 

Spectroscopic studies of hydrogen bonding have largely been 

restricted to infrared spectral studies of the asymmetrical X-H stretching 

and X-H bending vibrations in X-H***Y bonds. Recently, far infrared, 

Raman, NMR, and electronic spectral studies have shed some light on the 

nature of the hydrogen bond. These studies have been thoroughly reviewed 

by Ratajczak and Orville-Ihomas (63), Jakobsen, et al. CU2), and Rao and 

Murtby (62). 

Infrared spectroscopy provides the most straightforward technique 

for the detection and study of hydrogen bonding. Hydrogen bond formation 

results in a shift of the asymmetric X-H stretching mode (v^) to lower 

frequencies accompanied by an increase in integrated intensity and half-

bandwidth. The shift in frequency (^v^) from the "free" X-H stretching 

frequency (3700 cm~^ for 0-H bonds) can be correlated with various 

parameters and properties including X Y distance and hydrogen bond 

energy. The bending frequency (v^) also shifts, generally to hi^er 

frequency, and this shift can also be correlated with various properties. 

Hydrogen bond formation also results in additional vibrational modes, 

the most significant being the asymmetrical stretching (v^) and 

bending (Vg) modes of the H***Y bond. The frequencies of the modes 

associated with the weaker H* • 'Y or hydrogen bond have been found to lie 
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in the far infrared region. For a large number of compounds containing 

OHO hydrogen bonds, has been assigned to absorptions found in the 

region from 100-200 cm"^ (42). 

Recently several workers have attempted to correlate infrared 

spectral information on hydrogen and deuterium bonds with structural 

information in order to arrive at a useful description of the potential 

for the proton in short, strong hydrogen bonds. Snyder and Ibers (73) 

studied HCrOa and DCrOa and concluded that the 2.h9 & OHO bond is 

symmetrical whereas the 2.55 A ODO bond is asymmetrical. Delaplane, 

et al. (26) studied the similar system HC0O2-DC0O2 and reached similar 

conclusions regarding the 2.50 X. OHO and 2.57 A ODO bonds in these 

confounds. In both studies, the potential for the hydrogen atom was 

concluded to be a symmetric si ngl p-rm' nimnm well or double-minimum well 

with a low barrier. The potential for the deuterium atom was concluded 

to be a symmetric double-minimum well with a relatively high barrier 

extending to the third or fourth excited vibrational level. 

3. Structural studies of hydrogen bonding 

Structural studies of hydrogen bonding fall into two categories, 

1) studies of the effect of deuterium substitution on the hydrogen bond 

length, and 2) studies which attempt to directly determine the nature of 

the potential for the hydrogen from structural features. This latter 

type of study has generally been restricted to investigations of 

compounds containing short, strong hydrogen bonds, in order to establish 

the point at which a particular class of hydrogen bond becomes symmetrical 
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and the nature of the potential well at that point. Structural studies 

of hydrogen "bonding in solids, vith emphasis on neutron diffraction 

studies, have "been thoroughly revieved hy Hamilton and Ibers C^l). 

Ratajczak and Orvilie-Thomas (63) have published an extensive 

correlation of OHO bond lengths with vibrational frequencies. 

A majority of the structural studies of hydrogen "bonding have 

dealt with OHO hydrogen bonds. Pauling (57) has predicted that such 

bonds should become symmetrical at an 0 0 distance of about 2.32 &. 

Experimental evidence in the form of neutron diffraction studies (2, 3, 

22, 26, 30, 37, Uo, U6, 1+7, W, 51, 58, 68, 71, 72, 73, 7^^, 75) indicates 

that OHO bonds may become symmetrical at somewhat greater distances 

(2.1^0-2.50 2.), depending on the nature of the particular compound 

involved. 

Several recent studies of the effect of deuterium substitution on 

0 0 distance have appeared in the literature. Hamilton and Ibers (Uo) 

have found an expansion of 0.06 %. in the 2.U9 & OHO hydrogen bond of 

HCrOz on deuterium substitution. Delaplane, et al. (26) have found an 

expansion of 0.07 & in the 2.50 2. OHO hydrogen bond of HC0O2 on 

deuteration. Sabine, et al. (71) determined the structure of a-oxalic 

acid dihydrate using neutron diffraction techniques and found the 

crystalline solid to contain three different hydrogen bonds, their 

lengths being 2-506, 2.86k, and 2.881 respectively. Coppens and 

Sabine (22) determined the crystal structure of the corresponding 

deuterium substituted acid. All three hydrogen bonds were found to 

expand on deuteration; the amounts of these expansions were O .OI8,  0.015, 
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and 0.025 2., respectively. 

B. %rdrogen Bonding in the Metal Çll ) "ViC'-DioYi mes 

The intramolecular hydrogen bonds present in the metalCll)-vic-

dioximes play a significant I'-ole in making the vie-dioximes the selective 

gravimetric reagents that they are. These "bonds help to stabilize the 

molecular complexes, increasing the formation constants of the complexes 

and decreasing their solubilities in water. This latter effect is 

largely a result of the fact that the metal(II)-vic-dioxime complexes are 

organic-type solutes (69) vhich, in the absence of dissociation into 

ionic products, are insoluble in solvents like water. The following 

review summarizes the knowledge on the hydrogen bonding in the metal(ll)-

vic-dioximes. 

1. Early chemistry of the metal(II )-vic-dioximes 

In 1905 d Russian chemist, Tschugaeff (79). discovered that nickel 

ions and DMG react quantitatively to form a bri^t red complex which is 

insoluble in water and many organic solvents. At the time it was known 

that symmetric vic-dioximes exist in three isomeric forms, syn(B), 

amphiCy), and anti(a). Tschugaeff (79) was able to show that the a-

isomers formed isolable compounds with nickel(ll), palladium(ll), 

platinum(ll), and copper(II). These compounds had a ligand to metal 

stoichiometry of 2:1. He was also able to show that the reaction could 

be described by the equation 

+ 2H2D = M(HD)2 + 2H"^ 
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where is a divalent metal ion, H2D is the acid form of a và^dioxime. 

and HD" is the conjugate base. He noted that the nickel, palladium, and 

platinum complexes sublime vacuo and are non—electrolytes, and that 

they are insoluble in water and common organic solvents. 

Because of a misunderstanding about which group migrates in the 

Beckmann rearrangement (the acid catalyzed transformation of a ketoxime 

to an amide), Werner and Pfeiffer (87) assumed that the a-vic-dioximes 

had the amphi- configuration. On the basis of this erroneous assumption 

they proposed a structure for Ni(DMG)2 in which the nickel atom was 

coordinated to one nitrogen atom and one oxygen atom on each ligand, 

giving two six-membered rings. 

In 1921, Meisenheimer (50) showed that the g-vic-dioximes had the 

anti- configuration. In 1924, Brady and Mehta (ll) presented evidence 

which indicated that oximes could exist in a zwitterion form as well as 

in the normal oxime configuration. On the basis of this evidence, 

Pfeiffer and Richarz (60) proposed the following structure: 

0 HO 
H3C i CH3 

H3C \ 

OH 
i CE 3 
0 

Pfeiffer (59) provided additional evidence to support this structure when 

he found that the mono-O-ethers of the a-vic-dioximes react with nickel 

in much the same way as do the a-vic-dioximes. Pfeiffer also found that 



www.manaraa.com

17 

the reaction occurred if one of the oxime groups was replaced hy an imino 

or methylimine group. These observations indicated that the hydroxyl 

group of the second ozime is not involved in the reaction and that the 

metal is not linked to the oxygen and, therefore, strongly supported the 

five-membered ring structure with the metal coordinated to the nitrogen 

atoms. 

The lack of reactivity of the hydroxyl groups in the metal(II )-

vic-dioximes proved to he remarkable. Tschugaeff (80) found that 

Ni(DMG)2 did not react with J)henyl isocyanate. Barker (5) found that 

Ni(DMG)2 did not react with acetic anhydride but that it was methylated 

by methyl iodide. Thilo and Friedrich (77) found that a suspension of 

Ni(DMG)2 in ethanol would react with lithium ethoxide or sodium ethoxide 

but that the addition of water rapidly reversed the reaction. Thilo and 

Friedrich also reported no reaction with either dimethyl sulfate or 

methyl iodide. Brady and Muers (12) found that Ni(DMG)2 did not even 

liberate methane in the presence of methyl magnesium iodide. According 

to Krause, et al. (UU), Ni(DMG)2 does react with acetyl chloride to give, 

eventually, anhydrous nickel chloride (NiCl2) and the diacylated vic-

dioxime [(CH3CNOCOCH3)2]• 

After Brady and Muers (12) found no reaction with, methyl magnesium 

iodide in anqrl ether they proposed a structure which attempted to 

account for the lack of reactivity of the hydroxyl groups. Their 

structure, a modified version of the structure of Pfeiffer and 

Richarz (60), contained a pair of intramolecular hydrogen bonds, and is 
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sh.own below; 

./G 

jr "0 
\ 

Ni 

HaC^ --.N ^CHa 

K, y '  

This struct lire, based entirely on chemical evidence, resembles very 

closely the structure later determined by X-ray diffraction methods. 

2. Infrared spectral studies of the metal(ll)-"^'f-dioximes 

A number of infrared spectral studies of the metal(ll)-vic-dioximes 

have been reported in the literature. These studies have been primarily 

concerned with the hydrogen bonding in these complexes. There were 

considerable discrepancies among the early studies in the assignment of 

the OH stretching freq.uency. Voter, et al. (86) published the first 

infrared spectral study of the hydrogen bonding in the metal(ll)-vic-

dioximes. These workers studied a series of nickel complexes in both 

the normal and deuterated forms. The OH stretching frequency was 

assigned to a band in the IJOO cm~^ region, and it was concluded that 

the hydrogen bonds in these complexes were probably symmetrical. Several 

studies which followed (35, 5^» 55, 67, TO) led to similar assignments 

and conclusions. 
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In more recent studies, Blinc and Hadzi (,8, 9» 10) have assigned the 

OH stretching frequency for the nickel complexes to a troad, veak. "band in 

the 2300 cm""^ region. The spectra of some Pd, Pt, and Cu complexes were 

also studied. Of particular interest was the assignment of two different 

OH stretching frequencies, at 23^0 and 2650 cm~^, for CU(DMG)2. The 

copper complex was later found to contain two hydrogen "bonds of different 

lengths. 

Blinc and Hadzi (8) made assignments for several other bands in the 

spectra of metal(II)-vic-dioximes. The assignments were as follows: OH 

stretch Cv^^), 2300-2900 cm~^; OH in-plane tend , I65O-I8OO cm~^; 

OH out-of-plane bend (YQ^) , 820-930 cm~^ ; Cîî stretch , 15OO-I6OO cm~^ 

and NO stretch > about 12U0 and 1000 cm~^. 

Bundle and Banks (69), in attesipting to explain the relative 

solubilities and enthalpies of solution of CU(DMG)2» Ni(DMG)2, and 

Ni(EMG)2j predicted that the hydrogen bonds in CU(DMG)2 rearrange on 

dissolution to form much stronger hydrogen bonds such as those in the 

nickel chelates. This prediction was based on knowledge of the crystal 

and molecular structures of the three complexes, and the fact that in 

order for Cu(DMG) 2 to have an enthalpy of solution similar to that of 

Ei(DMG)z in an inert solvent, some source of energy was required. 

Cu(DMG) 2 was known to crystallize as a dimer held together by a pair of 

Cu-0 bonds. Assuming monomeric specie in solution, enerpy has to be 

provided in order to pay for breaking these bonds. The predicted 

hydrogen bonding rearrangement did this. In order to test this prediction. 

Cat on and Banks (21) undertook an infrared spectral study of the hydrogen 
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bonding in the normal and deuterated forms of CuCDMG^z, NiCllMG)2, and 

NiCEMG) 2. On the "basis of the infrared spectra and the reactivities of 

the complexes with dimethyl sulfate, phenyl isocyanate and acetic 

anhydride, it vas concluded that the hydrogen bonding in CuCDMG)2 re

arranges upon dissolution so that it is quite similar to the hydrogen 

bonding in the two nickel complexes. In their study, however. Cat on and 

Banks did not consider the evidence provided by the OH in-plane bending 

frequencies. The frequencies reported by Cat on and Banks have been 

summarized in Table 2. 

Table 2. Summary of data from Cat on and Banks (21) on OH stretching 
and bending frequencies for some metal ( II )-vic-dioximes 

Chelate State®" "^OH*^ 

CU(DMG)2 C 2.70 2650 IU92 
c 2.53 2382 16U0 

S — 23T5 I6U0 

Ni(EMG)2 C 2.33 2388 1784 

S — 2350 1715 

Ni(DMG)2 C 2.1:0 2322 1790 

^C is the solid or crystalline state; S indicates solution. 

b o 
E is the 0 0 distance in A. 

is the stretching frequency in cm"^. 

^6 is the bending frequency in cm~^. 
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Paying particular attention to the OH in-plane tending frequencies, 

these data suggest that only the longer bond in CUCDMG)2 rearranges on 

dissolution, becoming similar to the shorter bond. Caton and Banks 

felt that the lack of reactivity of CuCDMG) 2 in solution supported a 

shortening of both bonds, but no reactivity data were available on bonds 

intermediate in length between the two in CU(DMG)2. 

The most recent infrared study of metal(II ) -vic-dioximes is that 

of Bigotto, et al. (7)» who studied the infrared spectra of CU(DMG)2S 

Ni(DMG)2, Pd(DMG)2, and Pt(DMG) 2 in the region 1:000-200 cm~^. A 

normal coordinate analysis was also carried out for the complexes as 

31-body structures with symmetry. Vibrational, assignments were 

made for the in-plane infrared active vibrations in CU(DMG)2 and 

Pd(DMG)2. The calculations indicated considerable mixing of modes for 

many of the observed frequencies. The assignments for frequencies in 

CU(DMG)2 and Pd(DMG)2 which are relatively pure are as follows: "^QH* 

2300-2600 cm~^; 1700-1800 cm~^; 1540-1580 cm-\ ~132Q cm~^ j v„, 
Vfi VII LL 

1500-1550 cm~^; VjjQ, 1210-1260 cm"^, -1080 cm"^. The calculations for 

CU(DMG)2 confirmed the assignments for the OH stretching and bending 

frequencies made by Blinc and Hadzi and later by Caton and Banks. This 

agreement is somewhat artificial, however, because of the model used 

in the normal coordinate treatment. The model assumed symmetrical 

hydrogen bonds and the calculation adjusted force constants to fit the 

observed spectrum, with the result that the force constant calculated 

for the OH stretching mode is not reasonable. In addition, the 

frequencies associated with the weaker H*'*0 bond were not calculated 
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because force constants for the OH stretching and bending modes of this 

bond were not included in thé calculation (they were not required 

because the molecular symmetry which was assumed did not distinguish 

between the 0-H and bonds). In spite of these shortcomings, the 

conclusion that the \) and modes are &11 but free of mixing with 
vii Un. 

other modes should still be valid. 

3. Structural studies of the metal(ll)-vic-dioximes 

The crystal and molecular structures of a number of metal(ll)-

vic-dioximes have been determined using X-ray diffraction methods. 

These studies have, for the most part, depended on photographic methods 

of data collection. Many of the studies have relied on two-dimensional 

data. Such studies do not provide sufficiently precise information to 

allow conclusions to be reached regarding the nature of the hydrogen 

bonding in complexes whose structures are so determined. 

The structure of Ni(DMG)2 was first determined by Godycki and 

Bundle (36) and later refined by Williams, et al. (90). Ni(DMG)2 vas 

found to crystallize in the orthorhombic space group lb am, with four 

molecules in the unit cell. The structural determination was based on 

intensities estimated from three-dimensional film data. Within the 

limits of experimental error the molecule was found to have symmetry 

D-, . The final value of the conventional discrepancy factor was 

R = Zliy - |F^II/Z|F^I = 0.124, 

where F and F are the observed and calculated structure amplitudes, 
"2. ~S. 
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respectively. Th,e molecules were found to pack in parallel layers._ 

3.2$ A apart with, molecules in adjacent layers rotated 90° to accommodate 

the relatively "bulky methyl groups. The metal atom was found, as 

expected, to be coordinated by four nitrogen atoms. An extremely short 

intramolecular hydrogen bond was found, the 0—-0 distance being 

2.Uo ± 0.02 The packing configuration, which resulted in chains of 

nickel atoms, led to the prediction of Ni-Ni bonding (36) in the solid. 

The structure of Cu(DMG)2 was first determined by Frasson, et al. 

(32). CU(DMG)2 was found to crystallize in the monoclinic space group 

with four molecules in the unit cell. The structure was solved 

at liquid nitrogen temperature using photometrically integrated 

intensities taken from two-dimensional film data. The structure was 

solved in projection using difference maps. The final value of was 

0.10 for the (OOl) projection and 0.12 for the (100) projection. 

Cu(DMG)2 was found to crystallize as dimers joined by a pair of copper-

oxygen bonds. One of the more interesting features of the solid 

complex was the existence of two non-equivalent hydrogen bonds, a 

consequence of the involvement of one oxygen atom per molecule in dimer 

formation. The shorter of the hydrogen bonds was found to be 2.53 & 

long and does not involve the oxygen atom which participates in dimer 

formation. The longer hydrogen bond was found to be 2.TO % long. As 

a result of the increase in the coordination number of copper from four 

to five on dimer formation, the coordination is not planar. Rather, it 

is more correctly described as distorted square pyramidal. 
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The structure of CUCDMG)2 was very recently redetermined at room 

temperature by Vaciago and Zamhonelli C8l). Intensities were estimated 

visually from three-dimensional film data. Two crystals were used in 

the data collection. The structure was refined with anisotropic thermal 

parameters for the non-hydrogen atoms to a value for of O.O63. The 

hydrogen bonds were found to be 2.526 and 2.69h %. long. The hydrogen 

atom in the longer bond was found to be located at a distance of 1.04 %. 

from the oxygen atom not involved in dimer formation. The longer 

hydrogen bond was found to be non-linear, the OHO angle being 16T.5°. 

The NOH angle was found to be 101.0'^ - Although they were unable to 

locate the hydrogen atom in the other hydrogen bond, Vaciago and 

Zambonelli stated, indirectly, that the N-0 distances indicated it was 

bound more strongly to one oxygen atom than to the other, suggesting 

that the shorter OHO bond is asymmetrical. 

The crystal structure of Pd(DMG)2 was first reported by Williams, 

et al. (90). Pd(DMG)2 was found to crystallize, like Ni(DMG)2, in the 

orthorhomb i c space group lb am, with four molecules in the unit cell. 

The intènsities were taken with a proportional counter. Three-

dimensional data were collected and the structure was refined to a 

value for of 0.065. The structure was found to be nearly iso-

structural with that of Ni (_DMG) 2 but the Pd(DMG) 2 molecule appeared to 

be less symmetrical than that of Ni (DMG) 2 « The hydrogen bond in 

Pd(DMG) 2 was found to be much longer than in Ni (DMG) 2, the 0—0 distance 

being 2.59 Williams, et al. also found the hydrogen bond in 
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Pd(DMG)2 to be asymmetrical, their conclusion "being "based on the non— 

equivalence of K-O and Pd-N distances. 

The struct lire of Pd(DMG) 2 was also determined "by Panattoni, et al. 

C56). The structure, "based on intensities photometrically integrated 

from two-dimensional film data, was not significantly different from 

o 
that of Williams, et al. Thé value for the 0——0 distance, 2.62 A, was 

sli^tly longer than that of Williams, e}^ al., but the difference was 

not significant (25). 

Frasson, et al. (3^) reported the structure of Pt(DMG)2. This 

complex was found to crystallize in the orthorhombic space group lbam 

also, with four molecules in the unit cell. Two-dimensional intensity 

data were collected by photometric integration of reflections recorded 

on a Weissenberg camera equipped with an attachment for linear 

integration. The structure was refined from difference maps, with 

anisotropic thermal motion included for Pt, to a final value for of 

O-OT- The structure was found to be isostructural with those of 

Ni(DMG)2 and Pd(DMG)2. The 0 0 distance was found to be 3.03 

The K-0 distances were not equivalent, suggesting an asymmetrical 

hydrogen bond. 

The structure of Ni(EMG)2 was reported by Frasson and Panattoni (33). 

Ni(EMG) 2 crystallizes in the monoclinic space group P2^/c_, with two 

molecules in the unit cell. Two-dimensional intensity <5?+a were collected 

by photometric integration of films. The atomic coordinates were refined 

with difference synthesis in two projections to final values for in 

both projections of 0.11. The molecule wais found to have a trans-
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configuration. The packing precludes the possibility of Ki-Ni "bonding, 

the Ni atom in one molecule approximately overlying an oxygen atom of 

the molecule in the next layer. The ethyl group vas found not to lie in 

the same plane as the remainder of the molecule. The Ni-N, Bf-O, and 

C-N distances did not appear to be equivalent but the large standard 

deviations in these distances resulted in a lack of significance in any 

of the differences. The 0 0 distance in this complex was found to be 

2.33 considerably shorter than any previously studied OHO hydrogen 

bond. 

The structure of Ifi(G)2 was first reported by Calleri, et al. (18). 

Ni (G) 2 was found to crystallize in the monoclinic space group ̂ 2^/c_, 

with two molecules in the unit cell. The structural determination was 

based on three-dimensional counter data. The structure was refined with 

anisotropic thermal parameters for the heavy atoms by full matrix 

least-squares techniques to a final value for of 0.039. The molecule 

was found to have symmetry, the C-N bond distances being non-

equivalent. The lower symmetry was ascribed to intermolecular contacts. 

The N-0 distances were found to be equivalent and this fact, coupled 

with an 0 0 distance of 2.^53 led Calleri, e^ a^. to propose the 

existence of a symmetrical hydrogen bond in Ki(G)2« 

Following the study by Calleri, et al., Murmann and Schlemper (52) 

published a determination based on visually estimated intensities taken 

from film data. The agreement between these structural studies was 

remarkably good. 
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TtLe structure of PdCG)2 was reported "by Calleri, et al. (19). 

PdCG)2 was found to crystallize in the triclinic space group PI, with 

two molecules in the unit cell. The structural determination was based 

on three-dimensional counter data. The structure was refined with 

anisotropic thermal parameters for the non-hydrogen atoms by full 

matrix least-squares techniques to a final value for R of 0.0^6. The 

two molecules in the unit cell are not crystallographically equivalent. 

The molecules were found to have symmetry . A significant difference 

was found in the lengths of the two hydrogen bonds, the 0 0 distances 

being 2.599 and 2.659 A. The N-0 distances are consistent with 

asymmetric hydrogen bonds in both molecules. 

The structure of Pt(G)2 was reported by Ferraris and Viterbo (31). 

Pt(G) 2 crystallizes in the monoclinic space group P2^/^, with two 

molecules in the unit cell. The structural determination was based on 

three-dimensional counter data. The structure was refined with aniso

tropic thermal parameters by full matrix least-squares techniques to a 

final value for R of 0.0U9. The molecule was found to be planar with 

apparent symmetry . The N-0 distances were not significantly 

o 
different but the 0 0 distance of 2.655 A led Ferraris and Viterbo 

to postulate an asymmetrical hydrogen bond. 

Comparison of the well-determined structures of metal(II )-vic-

dioximes [Ni(G)2» Pd(G)2, Pt(.G)2, and CUCDMG)2] reveals some interesting 

and consistent features. For these complexes there appears to be a 

significant delocalization of the C-K double bonds through the C-C bond 
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of the chelate ring (18, 19, 31). Vaciago and Zambonelli (.81) stated 

that the shortening of the C—C "bond is the result of a smaller single-

bond covalent radius for sp^ hybrids (27). In calculating the sp^ 

single-bond radius, however, Dewar and Schmeising (27) have used 

diffraction studies of molecules in which a significant degree of 

conjugation can occur. Vaciago and Zambonelli also concluded that the 

lengthening of the C-N bonds and the shift in from I6U5 cm~^ in 

DMG to 1565 cm~^ in Cu(DMG)2 were not adequate evidence of délocalisation 

over the five-membered rings. This option, however, seems to be a 

minority one. 
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V. X-RAY DIFFRACTION STUDIES 

In order to provide definitive information on the nature of the 

hydrogen bonds in some metalÇll )-vic-dioximes, precise structural studies 

of these complexes were undertaken using X-ray diffraction techniques. 

A. Crystal and Molecular Structure of Cu(DMG)z-dz 

Cat on and Banks (21) concluded that "both of the hydrogen bonds in 

deuterated CuCDMG); are asymmetric. The structure of Cu(DMG)z-dg was 

determined in order to test this conclusion and to provide additional 

structural information on short hydrogen bonds. 

1. Apparatus and materials 

Much of the apparatus used in this investigation consisted of items 

found in most adequately equipped laboratories. Ho mention will be made 

of such equipment in this manuscript. The more sophisticated equipment 

will be referred to by make and model only. 

Most of the chemicals used were from the laboratory stock of 

reagent-grade quality chemicals. Only in cases where chemicals were not 

obtained in reagent-grade quality or where they were treated in some 

manner before use will specific details be given. 

a. Instrumentation and ap"Daratus Film data were collected on a 

Charles Supper Company precession camera. Intensity data were collected 

on a General Electric SPG-2 diffractometer equipped with a General 

Electric quarter—circle orienter in conjunction with a General Electric 
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XRD-6 source unit and a General Electric SPG-k detection unit equipped 

with a scintillation counter. 

Infrared spectra in the UOOO to 600 cm"^ range were obtained on a 

Beckman IR-7 spectrophotometer. 

Many of the computations were performed on an IBM System 360 Model 65 

computer. 

"b. Chemicals Dimethylglyoxime was a 'Baker Analyzed' reagent. 

It was recryst alii zed twice from 1:1 ethanol-water solution. 

2. Experimental procedures 

a. Preparation of CuÇPMGJz-dz Cu(DMG)z-dg was prepared in a 

glove box under a dry nitrogen atmosphere as follows. The hydroxyl 

hydrogen atoms of DMG were replaced via two recryst alii zations from hot 

D2O. Stoichiometric amounts of DMG-dz and CuClz in D2O solution were 

then mixed and a stoichiometric amount of UaaCOa was added. The 

resulting dark brown solution was allowed to evaporate to near-dryness 

producing a dark brown powdery solid which was then redissolved in a 

fresh portion of D2O. Upon standing several needle-like crystals were 

obtained. A halocarbon oil mull infrared spectrum of this compound 

indicated complete replacement of the oxime hydroxyl hydrogen atoms by 

deuterium. Crystals suitable for X-ray examination were sealed in thin-

walled Lindemann glass capillaries using glove-box techniques, to 

prevent deuterium-hydrogen exchange with atmospheric water. Microscopic 

examination of the crystal selected for X-ray study revealed it to be 

needle-like with approximate dimensions of O.O5 x 0.07 x 0.5% mm. The 
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deuterated and undenterated compounds were found to Tae similar in 

appearance. 

b. Collection of data Preliminary precession photographs exhib

ited ̂ /m Laue symmetry indicating a monoclinic space group. Systematic 

absences of (liO^) for ̂  ^ odd and of COjfcO) for ̂  odd indicated the 

C 
space group Cp^-F2.^ /n. The same space group has been reported [32) for 

CU(DMG)2. The unit cell parameters, calculated from zero, first, and 

second layer precession photographs corrected for film shrinkage are: 

a = 9.82 ± 0.01 A, 

b = 17.15 i 0.02 A, 

2 = 7.16 ± 0.01 A; 

B = 106.70 ± 0.12°. 

There are no significant differences between these parameters and those 

reported for CU(I3MG)2 at room temperatiire (32). Other crystal data are: 

M = 295.79 g/mole, V = 1155 a\ Z = k, ^ = 1.70 g/cm^, FCOOO) = 6o4 e'. 

Intensity data were collected at room temperature. The crystal was 

mounted with c_ along the spindle axis. Integrated intensities were col

lected by the moving-crystal moving-counter (8-20) technique using Hi-

filtered Cu radiation = 1.5^18 A) with an 83.3 second scan, 

centered about each peak, at a scanning speed of 2® per minute. Station

ary-crystal stationary-counter background counts of a duration equal to 

one-half the total scan time were taken at the beginning and end of each 

scan. Within a 20 sphere of 40° all accessible data in two unequivalent 

octants were recorded. Duplicate measurements of some of the more intense 

reflections were made in two additional octants. 
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A total of 10U8 reflections were measured. The intensity data were 

corrected for Lorentz-polarization effects, and for absorption. The 

absorption coefficient, y, is 28.51 cm~^, and an absorption correction Cl5) 

was made using ABCOR. The maximum and minimum transmission factors were 

0.897 and 0.67k, respectively. The estimated error in each intensity was 

calculated using the formula = [C^ + + (0.05 + (0.05 )^] 

(89) where and are the total count and background count, 

respectively. The equivalent values of were then averaged to give 

916 independent values. The estimated standard deviation in each 

structure factor was calculated from the meazi deviation of intensity by 

the method of finite differences (89). The reciprocals of the structure 

factor variances were used as wei^ts in the least-squares refinement. 

3. Solution and refinement of the structure 

The atomic coordinates for the non-hydrogen atoms in CU(DMG)2 (32) 

were used as a starting point. This model was refined by full matrix 

least-squares techniques [using a local modification of ORFLS (16)] with 

isotopic thermal parameters to a conventional discrepancy factor of 

R = ZMF I-IF II/SIF 1 = 0.095. The relativistic Dirac-Slater X-ray I Q I '—C ' ' '—O 

scattering factors for neutral atoms as reported by Cromer and Waber (2U) 

were Tised, with those of copper (23) and oxygen (76) modified for the real 

and imaginary parts of anomalous dispersion. Only 625 reflections which 

could be considered observed (F ^ > cy„ ) were used at this stage of the 

refinement. Two cycles of refinement with anisotropic thermal parameters 

for copper gave R_= O.O9O. Anisotropic thermal paramaters were inserted 
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in the refinement for nitrogen, oxygen, and carton atoms, in that order, 

with two cycles at each stage. The corresponding values for R were 

0.088, 0.079» and 0.078, respectively. 

An electron density calculation revealed some diffuse regions of 

positive density which were attributed to the hydrogen atoms. It was not 

possible, however, to locate these atoms with any precision, and their 

positions were calculated assuming tetrahedraJ. methyl groups. The 

orientation of the methyl group was adjusted to place the hydrogen atoms 

as close as possible to the positive regions in the map. The C-H bond 

distance was taken to be 0.92 A (99, 78). The hydrogen atoms were 

assigned isotropic thermal parameters similar to those of the atoms to 

which they are bound. Hydrogen atom parameters were not varied, but the 

positional parameters were frequently recalculated to allow for shifts 

in the positions of the carbon atoms. Deuterium atoms were placed mid

way between the oxygen atoms and assigned isotropic thermal parameters 

similar to those of the oxygen atoms. Deuterium parameters also were not 

varied but positional parameters were recalculated from time to time. 

Inclusion of the hydrogen and deuterium atoms with two cycles of 

refinement gave a value for R_ of 0.07I. 

At this point the wei^ts used in the refinement were adjusted by 

the following procedure. The reflection data were sorted on F^. The sum 

ZcuA^, where cu is the wei^t used in the refinement and A is j 1^1-1^1 U 

was calculated and divided by a number of reflections, giving a result we 

will arbitrarily call Q. The reflection data were then placed into 25 to 

30 overlapping sets of equal size so that each reflection was a member of 
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two sets, and the sum ZOJA^ was calculated for each. set. These sums were 

then divided by a number of reflections in the set and by Q to give a 

correction factor for each set. The weight, o), of each reflection was 

then divided by the average of the correction factors for the two sets 

in which it resided. Repetition of this procedure, varying the number 

of sets used, yielded a set of weights such that ZœA^/No. of reflections = 

1.0 and furthermore such that a plot of vs. gave approximately a 

strai^t line with ^ 1.0 over the entire range of values of 

Using the adjusted wei^ts, two cycles of refinement gave a value 

for of 0.063. Recalculation of hydrogen positions followed by two 

further cycles gave an ̂  of O.O62. An electron density difference map 

calculated at this point revealed no peaks greater than O.^eT/A^. 

A study was next made of the effect of exclusion of hydrogen or 

deuterium atoms, or both, on the refined structure. Exclusion of both 

, o 
resulted in a structure in which the 0 0 distances were ~O.OUA 

shorter than when these atoms were included. Exclusion of hydrogen 

atoms resulted in a structure with sli^tly longer 0 0 distances as 

well as less reasonable values for other bond distances. Tb.e placement 

of the deuterium atoms was not critical. As long as their positions did 

not vary unreasonably far from the center of the O-H-0 bond the 

positional and thermal parameters of other atoms were not significantly 

affected. 

The final cycles of refinement were carried out using all 

reflections except those with = 0. This gave a set of 83^ independent 

reflections. Weight adjustment followed by three cycles of refinement 
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gave a value for R_ of 0.084 and a, wei^ted R-factor of 

wR = = 0.046. 

An electron density difference map vas found to contain no peaks larger 

than 0.6e~/A^. The final refined positional and anisotropic thermal 

parameters, along vith their estimated standard deviations as derived 

from the inverse matrix of the final least-'-squares refinement cycle are 

found in Appendix A. A listing of the observed and calculated structure 

amplitudes for the 834 reflections used in the final cycles is found in 

Appendix B. 

4. Description of the structure 

Interatomic distances and angles with standard deviations sure given 

in Tables 3 and 4, respectively. Distances and angles are also 

illustrated in Figure 1. The standard deviations in the distances and 

angles were calculated using the variance-covariaace matrix and 

GEFFE (17)» and include errors in the lattice constants. Bond distances 

corrected for thermal motion assuming a riding model are also given in 

Table 3. 

The 0 0 distances are 2.569 and 2.716 A. Statistical tests (25) 

indicate that the differences between the N(4)-0(3) bond and the other 

H-O bonds are highly significant, and suggest that oxygen atoms 0(l) 

and 0(3) do not participate equally in the formation of the hydrogen 

bond between them. 
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0(5) 0(1) 
2.96» 

c(a) 

121.11 N(I) UARR ttS.M MW) .80.5* 

C(L) C(T| 
116.10 114.94 112.64 

,»7.62 

111.16 115.69 114.26 
CI5) C(9) 

125.19 HI;, N(2) 0.100 116.14 

C(4) C(6) 

2.716 012) 0(4) 

Figure 1. Interatomic distances and angles in CuCDMGiz-dz 
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Table 3. Interatomic distances in CuCCMG) z-cLz 

Without thermal With thermal 
motion, % motion- , % 

CU-NC1) 1-972 (9] 1.980 (9) 
CU-NC2) 1.920 (115 1.927 (.11) 
Cu-NÎS) 1.976 (9) 1.985 (9) 
Cu-N(l+) 1.926 (11) 1.935 (11) 
lîCl)-O(l) 1.382 (10) 1.400 (11) 
ir(2)-0(2} 1.378 (10) 1.383 (11) 
K(3)-0(k) 1.375 (11) 1.401 (11) 
%[k)-0(3) 1.326 (10) 1.336 (12) 
N(l)-C(l) 1.265 (12) 1.285 (15) 
C(3)-H(2) 1.314 (12) 1.331 (14) 
N(3)-C(5) 1.296 (12) 1.299 (14) 
N(U)-C(7) 1.305 (12) 1.324 (15) 
C(l)-C(2) 1.493 (15) 1.522 (16) 
C(3)-C(U) 1.459 (13) 1.465 (15) 
C(5)-C(6) 1.513 (14) 1.539 (16) 
C(7)-C(8) 1.536 (15) 1.556 (17) 
C(l)-C(3) I.5O8 (15) 
C(5)-CC7) 1.445 (14) 
0(l)-0(3) 2.569 (11) 
0(2)-0(U) 2.716 (11) 
Cu-0(2') 2.303 (7) 2.316 (8) 

^Assuming a riding model with the second atom given riding 
on the first. 

^Numbers in parentheses here and in succeeding tables are the 
estimated standard deviations in the least significant digits. 

Table U. Interatomic angles (°) in Cu(DMG)z-dz 

Il(l)-Cu-N(3) 

N(l}-Cu-N(2) 
NC3)-Cu-NCk) 

Cu-N(l)-OCl) 
Cu-N(2)-0C2) 

Cu-N(l)-CCl) 
Cu-N(2)-C(3) 

158.1 (3) K(2)-CU-N(4) 166.2 (3) 

78.9 (5) 
81.2 (5) 

N(1)-CU-N(4) 
N(2)-CU-N(3) 

97.6 (5) 
97.0 (5) 

120.8 (9) 
125.0 (7) 

CU-N(3)-0(4) 
Cu-H(4)-0(3) 

125.2 (8) 
123.9 (9) 

118.1 (9) 
118.9 (8) 

Cu-a(3)-c(5) 
CU-N(4)-C(7) 

114.3 (10) 
114.5 (9) 
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Table k. CContinued) 

C(I)-NCI)-OCI1 121.1 Cil) C(5)-NC3)-OC^) 119.7 Clo) 
CC3)-NC2)-0C2) 116.1 Cu) CC7)-NCU)-0C3y 121.(il) 

NCI)-CCI)-CC2) 123.2 Cl3) ïïC3)-CC5)-C(.6) 123.T Cl2) 
N(2)-CC3)-CCU) 126.2 (11) WC^)-CC7)-CC8) 120.6 (il) 

N(l)-C(l)-C(3) 112.8 (12) K(3)-C(5)-C(7) 113.7 (12) 
N(2)-C(3)-C(l) 111.2 (11) B(4)-C(7)-C(5) 115-9 (12) 

C(2)-C(l)-C(3) 123.1 (13) C(6)-C(5)-C(7) 122.6 (13) 
C(k)-C(3)-C(l) 122.5 (12) C(5)-C(7)-C(5) 123.3 (13) 

The two ligands coordinated to copper are not coplanar. Figure 2 

illustrates the configuration of the two ligands. This illustration, and 

many others in this manuscript, were computer drawn using ORTEP (43). 

Calculation of the best mean planes throu^ the chelate rings reveals a 

lack of planarity for both rings. The equations of the least-squares 

planes and the deviations of the atoms from them are presented in Table 5. 

Table 5- Equations of the least-squares planes throu^ the rings in 
Cu(DMG)2-d2 and deviations of the atoms from them 

Plane 

2.283X - U.276y + 5.969z - 1.8oU = 0.0 

d{2.) to 

Cu -0.0002 0.20 
N(l) 0.0189 2.10 
N(2) 0.0174 1.94 = 13.2 
C(l) -0.0239 1.84 
C(3) -0.0138 1.26 

^Equations are in fractional coordinates, for the molecule 
nearest the origin, referred to the non-orthogonal crystal
lograph! c axes-
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Table 5. CContinued) 

Plane II 

-il.Ql9x - O.U23jr + 7.0322 - 2.500 = 0.0 

dCX) 

Cu 
N(3) 
N(U) 
C(5) 
C(7) 

0.0003 
-0.0401 
-0.0230 
0.0574 
0.0046 

0.31 
4.46 
2.56 = 49.6 
4.78 
0.46 

Significant differences (25) in bond length, occur between adjacent 

Cu-N bonds but not between non-adjacent Cu-N bonds. The differences 

between the C(l)-N(l) bond and the other C-N bonds are also significant, 

possibly the result of distortions caused by dimerization. The config

uration of the molecule, especially with regard to the coordination about 

copper, is distorted upon dimer formation as illustrated in Figure 2. 

The difference between the bond angles N(l)-Cu-Il(3) (158°) and 

N(2)-Cu-ïï(4) (166°) is highly significant, indicating that the chelate 

rings are twisted with respect to one another. 

A comparison of the bond distances in Cu(DMG) z-dz with those found in 

similar metal(II)-vic-dioxime compounds suggests that all of the values 

are reasonable. The carbon-carbon bonds to the four methyl carbon atoms 

are somewhat short, but a correction for thermal motion assuming a riding 

model gives quite reasonable values (the average C-C distance is 1.52 A) 

considering the estimated errors in these distances. 
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Figure 2. Stick bond illustration of a dimer of CU(DMG)2 
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The nature of the thermal motion in this molecule is illustrated in 

Figure 3. The ellipsoides are scaled to enclose 50? probability. The 

thermal motion of all atoms is reasonable. 

Figures U and 5 illustrate the packing of the diners projected along 

the ̂  and directions, respectively. 

B. Crystal and Molecular Structure of Cu(DMG)2 

At the time the determination of the structure of Cu(DMG)2-d2 was 

completed, the only structural study of CuCDMG) 2 in the literature was 

that of Frasson, et al. (32). This structural determination was not 

sufficiently precise to allow meaningful comparisons of the structures of 

Cu(DMG) 2 and Cu(DMG)2-d2 to "be made. The structure of CU(MG)2 was 

therefore redetermined. There hsis since appeared in the literature 

another redetermination (8I). Comparisons of the two redeterminations 

and of the structures of CU(EMG)2 and its deuterated analog will be made 

later in this manuscript. 

1. Apparatus and materials 

a. Instrumentation and apparatus Film data were recorded with 

a Nonius precession camera. Intensity data were collected with a fully 

automated Hilger-Watts four circle diffractometer equipped with a 

scintillation counter and interfaced to an SDS-910 computer in a real

time mode. Computations were performed on an IBM 360/65 computer. 

b. Chemicals Copper dimethylglyoxime had been prepared "by 

J. E. Caton (20) of this laboratory using the method of Basu, Cook, and 
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Figure 3. Illustration of the thermal motion in Cu(DMG)2-d2 with ellipsoids scaled to 
enclose ^0% probability. 
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Figure 4. Clinographlc projection, along of the contents of a unit cell 
crystalline CU(DMG)2-C12 
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Figure 5. Clinographic projection, along £, of the contents of a unit cell of 
crystalline Cu(DMG)2-d2 
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Belfort (6) and consisted of crystals of form and purity suitable for 

X-ray studies. 

2. Experimental procedures 

a. Preparation of CU(DMG)2 A suitable crystal of CUCDMG)2 

was selected and sealed in a thin-walled Lindemann glass capillary. 

Microscopic examination of the crystal revealed it to "be needle-like with 

approximate dimensions 0.1 x 0.2 x 0.5 mm. 

b. Collection of data Preliminary precession photographs 

exhibited 2/m Laue symmetry indicating a monoclinic space group. 

Systematic absences of (hO_£) for ̂  ^ odd and (OkO) for k_ odd indicated 

the space group C^-P2^/^, in agreement with the previous determination 

(32). The lattice constants and their standard deviations were 

obtained by a least-squares fit (88) to 12 independent reflection angles 

whose centers were determined by left-right, top-bottom beam splitting 

on a previously aligned Hilger-Watts four circle diffractometer (Mo 

radiation, X = 0.71069 A). Any error in the instrumental zero was 

eliminated by centering the reflection at both +29 and -26. The lattice 

constants are: 

a = 9.7969 ± 0.0019 A, 

^ = 17.1194 ± 0.0022 A, 

c _ =  7 . 1 4 5 1  ±  0 . 0 0 2 2  A ;  

3 = 106.93 ± 0.02°. 

There are no statistically significant differences between these 

parameters and those previously reported (32). Other crystal data are: 
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M = 293.77 g/mole, V = 1146.4 Z = 4, ̂  = 1.702 g/cm^, FCOOO] = 6o4e-. 

For data collection the selected crystal vas mounted with c^ along the 

spindle axis. Data were collected at room temperat-ure using the automated 

di ffract omet er. Two octants of data were taken using Zr-filtered Mo 

radiation within a 9 sphere of 25° Csin 6/X = 0.5947). Some additional 

intensities were measured within a 0 shell of 25-28® hut the percentage 

of reflections for which the intensity could he considered observed was so 

low that data collection in this region of 0 values was not completed. 

The 0-20 step-scan technique, 0.01°/step counting for 0.4096 sec./step, 

was employed with a take-off angle of 4.5°. Variable step symmetric scan 

ranges were used with the number of steps used for a particular 

reflection determined as follows: ^=50 + 2 per °0. Individual back

grounds were obtained from stationary-crystal stationary-counter 

measurements for one-half the total scan time at each end of the scan. 

A total of 2653 reflections were measured in this way. 

As a general check on electronic and crj''stal stability, the 

intensities of three standard reflections were measured periodically 

during the daza collection. Monitoring options based on these standard 

counts were employed to maintain crystal alignment and to stop the data 

collection process if the standard counts fell below statistically 

allowed levels. No decrease resulting from decomposition was observed 

for any of the standards during data collection. 

The intensity data were corrected for Lorentz-polarization effects, 

and for effects due to absorption. The absorption coefficient, n, is 

19.92 cm"^, and an absorption correction Cl5) was made using ABCOR. The 
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mayijnxmi and minimum transmission factors were 0.9^5 and 0.793, 

respectively. The estimated error in each, intensity was calculated by 

[cCl)]2 = [C^ + + Co.05 C + Co.05 where and are the 

total count and "background count, respectively. Eg_uivalent values of 

were then averaged to yield 2^55 independent values. The 

estimated standard deviation in each structure factor was calculated 

from the mean deviation of intensity by the method of finite 

differences (89). The reciprocals of the structure factor variances 

were used as wei^ts in the least-squares refinement. 

3. Solution and refinement of the sti-ucture 

Thp atomic coordinates for the non«rhydrogen atoms in CuCDMG}2'-<3.2 were 

used as a starting point. This model was refined by full matrix least-

squares techniques using a local modification of ORFLS (l6) with 

isotropic thermal parameters to a conventional discrepancy factor of 

R = = 0-126 

and a wei^ted R-factor of 

wR = [Zw( |F^|-|F^| = 0.139. 

The relativistic Dirac-Slater scattering factors for neutral atoms of 

Cromer and Waber (2U) were used with those of copper modified for the 

real and imaginary parts of anomalous dispersion (23). Unless otherwise 

indicated, all unique reflections were used throughout the refinement. 
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At this stage anisotropic thermal parameters were included for 

copper and nitrogen and two cycles of refinement gave values for ̂  and 

0® of 0.084 and 0.095» respectively. Two further cycles with anisotropic 

thermal parameters included for all atoms except the methyl carbon atoms 

gave values of R and wR of O.OT^ and 0.083, respectively. An electron 

density difference map did not reveal the hydrogen atoms, but did reveal 

regions of positive density near the methyl carbon atoms which had the 

general shape of toroids and were interpreted as indicating more or less 

free rotation of the methyl groups. As an approximation to free 

rotation, six half-hydrogen atoms were located symmetrically about the 

methyl carbon atoms with the H-C-C angle taken as 109.5° and the C-H 

O 
distance taken as 1.01 A. The hydroxy 1 hydrogen atoms were placed 

midway between the oxygen atoms. All hydrogen atoms were given isotropic 

thermal parameters similar to those of the atoms to which they are 

bound. Two cycles of refinement with hydrogen parameters unvaried gave 

values for and tc® of 0.059 and O.O6O, respectively. 

The positional and isotropic thermal parameters for the hydroxy 1 

hydrogen atoms were next allowed to vary and two cycles of refinement 

gave values for and wR^ of 0.059 and 0.060, respectively. The isotropic 

B for one of the hydrogen atoms was negative, however. A statistical 

analysis of [where = ( I^^I-lZ^l )^] as a function of scattering 

angle and magnitude of ̂  revealed systematic fluctuations, and the 

wei^ts were adjusted using the procedure described in the section on the 

refinement of the structure of Cu(DMG) 2-^.2» One cycle of refinement gave 

values for R and wR of O.O6O and 0.057, respectively. Hydrogen positions 
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were recalculated and two cycles of refinement with, hydroxyl hydrogen 

parameters allowed to vary gave values for ̂  and a® of 0.059 and 0.057» 

respectively. Recalculation of methyl hydrogen positions followed hy 

two final cycles gave values for ̂  and OJR of 0.058 and 0.056, 

respectively. Repetition of the final two cycles using 1753 "observed" 

reflections (those with 2) gave values for R_ and a® of O.O38 
— -o_ 

and O.OU7, respectively, with no significant differences in the final 

refined parameters. A final electron density difference map revealed no 

peaks greater than 0.3e~/A^. The final standard deviation for an 

observation of unit wei^t ([zua^/clig-kv)] where no is the number of 

observations [2^55] and nv is the number of variables [162]) was 0.997 

electrons. During the final cycle, the largest shift in any parameter 

was less than 0.01 times its own sigma. 

The final positional and thermal parameters for non-liydrogen atoms, 

along with their standard deviations, are listed in Appendix A. Table 6 

gives the final positional and isotropic thermal parameters, with stan

dard deviations, for the hydroxy1 hydrogen atoms. Standard deviations 

Table 6. Final refined positional and isotropic thermal parameters for 
the hydroxyl hydrogen atoms in CuClMGja 

X Y* Z B 

K(l) 0.2363(67) 0.19^6(11) 0.337^(115] 5.95(170) 

H(2) -0.2184(57) 0.0085(29) 0.3221(78) 2.J+9(10U) 



www.manaraa.com

50 

were obtained from the inverse matrix of the final least-squares 

refinement cycle. Root-mean-square components of thermal displacement 

along the principal axes are given in Table 7 for all refined atoms. a 

Table J. Root-mean-square components of thermal displacement Ca) along 
principal axes for refined atoms in Cu(DMG)2 

1 

Axis 

2 3 

Cu 0.155 0.178 0.230 

N(l) 0.168 0.211 0.236 
N(2) 0.173 0.189 0.223 
N(3) O.16U 0.207 0.232 
N(U) 0.176 0.202 0.230 

0(1) 0.160 0.246 0.295 
0(2) 0.162 0.219 0.230 
0(3) 0.170 0.229 0.293 
0(U) 0.171 0.229 0.263 

C(l) 0.172 0.207 0.22k 
C(2) 0.181 0.260 0.307 
C(3) 0.177 0.191 0.206 
C(k) 0.190 0.2U0 0.258 
C(5) 0.180 0.201 0.217 
c(6) 0.183 0.253 0.267 
C(T) 0.196 0.211 0.219 
C(8) 0.180 0.273 0.282 

H(l) 0.275 
H(2) 0.178 

listing of all 2^55 unique recorded and calculated structure amplitudes 

is found in Appendix B. An indication of the directions and root-mean-

square amplitudes of vibration for the refined atoms is provided by 

Figure 6. 
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Figure 6. Stereo illustration of the thermal motion in CuCdMG)2 with ellipsoids scaled 
to enclose 50% probability. 
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k. Description of the structure 

Interatomic distances and angles with standard deviations are given 

in Tables 8 and 9» respectively, and illustrated in Figure ?• The 

Table 8. Interatomic distances in Cu(PMG)2 

Witiiout thermal 
• • • • motion) ̂  

With thermal 
motion^, %. 

Cu-NCl) 1.9)49 (3) 1.952 C3) 
CU-NC2) 1.947 C3) 1.948 C3) 
Cu-N(3) 1.968 C3) 1.972 (3) 
Cu-N(4) 1.9^3 C3} 1.946 (3) 
W(l)-0(1) 1.367 CU) 1.385 (4) 
N(2)-0C2) 1.353 (4) 1.358 (4) 
K(3)-0(U) 1.389 W 1.399 (4) 
N(4)-0(3) 1.333 W 1.350 (4) 
C(l)-N(l) 1.289 (5) 1.292 (5) 
C(3)-If(2) I.29I; C5) 1.295 (5) 
C(5)-N(3) 1.283 (5) 1.284 (5) 
ll(l+)-C(7) 1.299 (5) 1.302 (5) 
CC3)-C(1) 1.481 (5) 1.484 (5) 
C(5)-C(7) 1.486 (5) 1.489 (6) 
C(l)-C(2) 1.483 (6) 1.507 (6) 
C(3)-C(U) 1.488 (6) 1.505 (6) 
C(5)-C(6) 1.494 (6) 1.510 (6) 
C(7)-C(8) 1.494 (5) 1.515 (6) 
Cu-0(2') 2.294 (3) 2.298 (3) 
0(l)-0(3) 2.547 (4) 2.547 (4) 
0(2)-0(U) 2.699 (4) 2.703 (4) 
0(1)-H(1) 1.142 (71) 
0(3)-H(l) 1.4iU (70) 
0(2)-H(2) 1.731 (53) 
0(U)-H(2) 0.976 (52) 

^Assuming a riding model with the second atom given riding on the 
first. 
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Table 9. Interatomic angles C°) in CuCdMG)2 

NCI)-CU-IIC3) 158.5 CD NC2)~CU-NC4) 165.5 CD 

1I(1)-Cu-HC2) 
II(3)-CU-NC4) 

80.6 Cl) 
80.2 Cl) 

NCl)-CTi-NCk) 
1IC2)-Cu-NC3) 

96.1 CD 
97.7 CD 

N(l)-Cu-0C2') 
K(2)-Cu-0(2') 

103.8 Cl) 
91.7 Cl) 

NC3)-Cu-0(2') 
N(U)-Cu-.0(2') 

97.7 CD 
102.8 (1) 

Cu-Il(l)-0(1) 
Cu-Il(2)-0(2) 

123.8 C2) 
122.6 (2) 

Cu-N(3)-0(1^) 
Cu-N(4)-0(3) 

12k.9 (2) 
122.9 (2) 

Cu-N(l)-C(l) 
Cu-N(2)-C(3) 

116.1 (3) 
115.8 (2) 

Cu-N(3)-C(5) 
Cu-N(U)-C(7) 

116.3 (3) 
116.2 (3) 

C(l)-N(l)-0(1) 
C(3)-N(2)-0(2) 

120.0 C3) 
121.6 (3) 

C(5)-K(3)-0(4) 
C(7)-K(4)-0(3) 

118.6 (3) 
120.8 (3) 

N(l)-C(l)-C(2) 
N(2)-C(3)-C(4) 

123.6 ( k )  
123.3 (3) 

B(3)-C(5)-C(6) 
N(4)-C(7)-C(8) 

12U.9 w 
123.5 C4) 

N(l)-C(l)-C(3) 
N(2)-C(3)-C(l) 

113.5 (3) 
113.8 (3) 

N(3)-C(5)-C(7) 
m(k)-C(7)-C(5) 

113.2 (3) 
113.8 (3) 

C(2)-C(l)-C(3) 
C(U)-C(3)-C(1) 

122.9 (I4) 
122.9 (3) 

C(6)-C(5)-C(7) 
C(8)-C(7)-C(5) 

121.9 (3) 
1 2 2 . 6  ( h )  

N(l)-0(l)-0(3) 
N(k)-0(3)-0(l) 

96.0 (2) 
98.8 (2) 

N(2)-0(2)-0(U) 
ïï(3)-0(U)-0(2) 

96.7 (2) 
93.6 (2) 

N(l)-0(1)-H(l) 
N(lt)-0(3)-H(l) 

101.1 (33) 
103.0 (27) 

N(2)-0(2)-H(2) 
K(3)-0(k)-E(2) 

100.0 (16) 
99.5 (29) 

0(l)-H(l)-0(3) 170.7 (61) 0(2)-H(2)-0(U) 170.7 (1^5) 

N(2)-0(2)-Cu* 102.6 (2) 

Dihedral angle between two planes, each defined 
by three atoms 

S: S: «5.8 (1) 
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Figure 7. Interatomic distances and angles in CU(DMG)2 
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standard deviations in "bond distances and angles were calculated using 

th.e variance-covariance jfiatrlx and ORFFE [17) and include errors in 

the lattice constants. The crystal packing of CuCDMG)2 is illustrated 

in Figure 8. 

It seems reasonable to conclude that the shorter hydrogen bond 

in Cu(DMG)2» as well as the longer bond, is asymmetrical. This con

clusion is based on several structural features. The difference in 

the N(1)-0(i) and IL(U)-0(3) bond distances is hi^ly significant. The 

hydroxyl hydrogen atom in the shorter bond did not refine to the 

center of the bond, but rather is much closer to 0(l), in agreement 

with the ÏÏ-0 distances. Finally, the refined 0 0 distance of 2.5^7 A 

is longer than would be expected were this hydrogen bond symmetrical. 

It also seems reasonable to conclude that the hydrogen bonds are 

not linear. This conclusion is suggested by the refined positions of 

the hydroxyl hydrogen atoms, and by the thermal motion of the oxygen 

atoms. Examination of the N-O-O and W-O-H angles also supports this 

conclusion. The K-0-0 angles are, on the average, 8.2° smaller than 

the H-O-H angle of 104.5° in H2O. The N-O-H angles, in contrast, are, 

on the average, only 3.6° smaller than the H-O-H angle in H2O. This 

decrease can. be explained as resulting from hydrogen bond formation. 

Hamilton (39) has noted in a neutron diffraction study of IMG that 

the tendency of the covalent bond angles to remain un distorted can 

outweigh any inherent tendency of the hydrogen bond to be linear. 
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Figure 8. Stereo illustration of the crystal packing of CuCdMG)2 
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An examination of other bond distances in the molecule reveals 

no significant differences between bonds expected to be chemically 

equivalent with the exception of bonds Cu-lnCS] Cl-968 A) and Cu-NC^) 

Cl.9^3 a). Some difference would be expected here thoii^ because of 

the distortions which arise as a result of dimer formation. The 

nitrogen atoms in question are a part of the ligand not involved in 

dimer formation. This ligand is bent away from the other half of the 

dimer and twisted with respect to the other ligand in the same half 

of the dimer. This is illustrated in Figure This distorted square 

pyramidal configuration around the copper atom might well be expected 

to give rise to differences in bond lengths for bonds which, in the 

absence of the distortion, would normally be equivalent. The intra-

ligand bond distances in CU(DMG)2 agree quite well with those in other 

oximes, and especially in other metal(II)-vic-dioximes. 

An examination of the thermal parameters for the non-hydrogen 

atoms or their root-mean-square displacements along principal axes 

reveals several interesting features. For eleven of the non-hydrogen 

atoms at least one of the two shorter principal axes is within l4° of 

one of the bonds to that atom, the exceptions being the carbon atoms 

in the chelate rings and atoms N(l;) and 0(U). The carbon atoms though 

are nearly isotropic. In the case of the remaining two atoms, N(4) 

and 0(4), at least one axis is within 26® of a bond and for an 

additional axis is within 22° of a bond. 
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Figure 9» Stick bond illustration of a dimer of CU(DMG)2 



www.manaraa.com

59 

A compaxison of root^HneaxL-square components of thermal displace^ 

ment along principal axes reveals fairly good agreement between like 

atoms. Th.e magnitude of th.e root—mean'-sqiiare th.ermal displacement is 

found to increase with, distance from the center of th.e molecule, a 

consequence of greater freedom of motion for atoms nearer to th.e 

extremeties of the molecule. 

An examination of "bond distances corrected for thermal motion 

assuming a riding model reveals some smeuLl, insignificant increases in 

the bond lengths in the chelate ring, and larger, significant increases 

in the N-O and C-C bonds to terminal atoms. The average increase of 

o 
these distances amount to 0.013 and 0.019 A, respectively. 

Calculation of the best mean planes throu^ the five-membered 

chelate rings reveals a lack of planarity for both rings by as much as 

0.05 A. Table 10 gives the equations of these planes and the 

deviations of the atoms from them. 

Table 10. Equations of the least-squares planes through the rings in 
Cu(DMG)2 and deviations of the atoms from them 

Plane I®" 

2.219% - h.kSly + 5.9^2z - 1.823 = 0.0 

dci) to 

Cu -0.00005 0.13 
KCI) -0.00716 1.84 
IÎC2) 0.00902 3.27 = 82.8 
cCi) 0.01854 4.75 
C(3) -0.02791 6.79 

^Equations are in fractional coordinates, for the molecule nearest 
the origin, referred to the non-orthogonal crystallographic axes. 
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Table 10. (Continued) 

Plane II 

-0.947% - 0.369y + 7.003z - 2.511 = 0.0 

dci) to 

Cu 0.00029 0.71 
KC3) -0.02UUU 9.05 
N(4) -0.00827 2.95 = 263.4 
C(5) 0.05294 12.91 
0(7) -0.00889 2.36 

A comparison of the structiores of Cu(lMG) 2 and Cu(DMG)2-d2 determined 

in this study reveals only one significant difference, namely the 0(5)-

C(7) "bond lengths. Careful examination of the structures suggests that 

this difference is very likely the result of inaccuracy in the position 

of C(7) in Cu(lMG)2-d2. 

The present study does not indicate a significant expansion of the 

hydrogen bonds in Cu(DMG) 2 on deuteration. Both hydrogen bonds do in

crease in length however, and the lack of significance does not 

necessarily exclude an isotope effect. 

A comparison of the results of this study, and another recently 

reported (8I) redetermination of the structure of Cu(DMG)2 reveals an 

amazing agreement in all refined parameters. This is particularly remark

able in view of the fact that thermal parameters tend to te sensitive to 

systematic errors which can occur in any structural determination, and 

the fact that the other redetermination was "based on intensities visually 

estimated iron, films. This agreement lends credence to the refined 

thermal parameters and the conclusions drawn from them. A comparison of 
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bond distances from the two studies reveals only one significant differ

ence. Unfortunately, that difference is in the 0Clî-0C3]l distance, the 

value reported by Vaciago and Zambonelly being 2.526 A. If the value of 

2.526 A C81) is used in comparing the normal and deuterated structures, a 

significant expansion of the shorter hydrogen bond is indicated. In view 

of the fact that both studies result in an apparent expansion of both bonds 

a result which was anticipated from other structural studies of hydrogen 

bonds (22, 71)» and the fact that the differences in the 0—0 distances 

determined in the present study are close to being significant, it seems 

reasonable to conclude that more precise structural information for 

Cu(DMG)2-d2 would reveal a significant increase in both 0 0 distances. 

C. Crystal and Molecular Stznicture of lîi(EMG)2 

The crystal and molecular structure of Ni(EMG)2 was first reported by 

Frasson and Ponattoni (33). The 0 0 distance reported in that study was 

totally inconsistent with the observed 0-5 stretching frequency (21), the 

reported value (2.33 A) being much shorter than the expected value. The 

structure was therefore redetermined. 

1. Apparatus and materials 

a. Instrumentation and apparatus A Nonius precession camera was 

used to obtain preliminary photographs. 

Intensity data were collected on a fully automated Hilger—Watts four 

circle diffractometer equipped with a scintillation counter and interfaced 
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with, an SDS-910 computer in a real time mode. Subsequent calculations 

were performed on an IBM 360/65 computer. 

h. Chemi cals Ethylmethylglyoxime was prepared "by oximation of 

the Eastman product 2,3-pentanedione. The preparation was "by N. Wilcox 

of this Laboratory following the procedure of Bryant and Smith [lÀ). 

2. Experimental procedures 

a. Preparation of lîi(EMG) 2 Ni(EMG) 2 was prepared by the follow

ing procedure. Stoichiometric amounts of NiCla and EMG in aqueous solu

tions were mixed and dilute aqueous NH3 was added to precipitate the 

bri^t orange complex. The precipitate was filtered and washed. Two 

different modifications of Ni (EMG) 2 had been reported in the literature 

(1). One of these crystallized in a monoclinic space group and was desig

nated the a-form. The other crystallized in an orthorhombic space group 

and was designated the B-form. The previous structural study was of the 

a-form. A recent study by Egneus (29) indicated that the a-form is the 

more stable of the two and that crystallization from chloroform produces 

this modification alone. The precipitated Ni(EMG)2 was therefore recrys-

tallized from chloroform, giving dark orange needle-like crystals of 

relatively large cross-section. A suitable crystal was selected and 

sealed in a Lindemann thin-walled glass capillary. 

b. Collection of data Preliminary precession photographs 

e^diibited ^/m Laue symmetry, indicating a monoclinic space group. 

Systematic absences of hO^ for ̂  odd and CM for ̂  odd indicated the 

space group C^^-P2^/2 in agreement with the previously reported 
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determination. The unit cell parameters and their standard deviations 

vere obtained "by a least^quared fit C88} to ih independent reflection 

angles whose centers were determined "by left-ri^t top-bottom beam 

splitting on a previously aligned Hilger-W&tts four circle diffractometer 

(Mo radiation, X = 0.71069 %). Any error in the instrumental zero was 

eliminated by centering the reflection at both +26 and -29. The refined 

lattice constants are: 

a = 4.7471 ± 0.0005 A, 

b = 11.7409 ± 0.0030 A, 

c _ =  1 1 . 9 8 9 5  ±  0 . 0 0 2 0  A ;  

6 = 91.611 ± 0.016°. 

Other crystal data are: CioHiaM^O^Ni, ̂  = 316.99 g/mole, ̂ =2, 

V = 668.0 = 1.576 g/cm^, F_COOO) = 332e~. For data collection 

the selected crystal, with approximate dimensions 0.2 x 0.2 x 0.5 mm, 

was mounted with ̂  along the spindle axis. Data were collected at room 

temperature using the fully automated Hilger-Watts diffractometer. Two 

octants of data were recorded using Zr—filtered Mo radiation within 

a 26 sphere of 50° (sin 6/A = 0.5947)- The 0-26 step scan technique, 

0.01°/step counting for 0.4096 sec./step, was employed with a take-off 

angle of 4.5°. Variable step symmetric scan ranges were used with the 

number of steps for a given reflection determined as follows: N = 50 + 

2 per °6. Stationary-crystal stationary-counter background measurements 

were made by counting for one-half the total scan time at each end of 

the scan. A total of 1608 reflections were measured this way. 
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As a general ch.eck on electronic and crystal stability, the 

intensities of three standard reflections were measured periodically 

during the data collectioh. Monitoring options based on these standard 

counts were used to maintain crystal alignment and to stop the 

collection of data if standards counts fell below statistically allowed 

fluctuations. No decrease due to decomposition was observed in any of 

the standards during data collection. 

The intensity data were corrected for Lorentz-polarization effects. 

The absorption coefficient, U» is lU.68 cm**^, and an absorption 

correction (15) was made using ABCOR. The maximum and minimum 

transmission factors were 0.839 and 0.T55, respectively. The estimated 

error in each intensity was calculated by = [C^ + + 

(0.05 C^)^ + Co.05 where and are the total count and back

ground count, respectively. The individual values of from 

equivalent sets were then averaged to give 1397 independent values. 

The estimated standard deviation in each structure factor was calculated 

from the mean deviation of intensity by the method of finite 

differences (89). The reciprocals of the structure factor variances 

were used as weights in the least-squares refinement. 

3. Solution and refinement of the structure 

Due to the presence of only two molecules per unit cell, the metal 

atoms are restricted to the centers of symmetry. The positions of the 

remaining atoms except hydrogen were obtained from three-dimensional 

electron density difference maps and were refined by full matrix 
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least-squares techniques Cl6) with, isotropic thermal parameters to a 

conventional discrepancy factor of 

r = e|]f^i-iy i/ziy = 0.135, 

and a weighted F^factor of 

cor = [zw( = 0.122. 

The relativistic Dirac-Slater X-ray scattering factors for neutral atoms 

as computed by Cromer and Waber (24) were used, with those of nickel 

modified for the real and imaginary parts of anomalous dispersion (23). 

All unique data were used in the refinement. 

At this point anisotropic thermal parameters were included for 

nickel and nitrogen atoms and two cycles of refinement gave a value for 

of 0.115. The remaining atoms, with the exception of the methyl 

carbon atoms, were then given anisotropic thermal parameters and two 

cycles of refinement gave values for and of O.lOU and 0.09^, 

respectively. 

An electron density difference map was calculated and revealed some 

rather diffuse positive regions which could be interpreted as hydrogen 

atoms. Due to the uncertainty in the positions of these atoms, however, 

their positions were calculated assuming tetrahedral methyl groups and a 

C-H distance of I.08 A. The methyl hydrogen atoms were placed as near 

as possible to the observed peaks in the difference map. The methylene 

hydrogen atoms were placed in the plane which bisects the C-C-C angle of 

the ethyl substituent, at an angle of 109.5°-from one another. The four 

H-C-C angles were assumed to be eq_ual. The hydroxy 1 hydrogen atom was 
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placed midway "between the oaygen atoms. All hydrogen atoms were assigned 

isotropic thermal parameters similar to those of the atoms to which they 

are hound. 

Two cycles of refinement with hydrogen atom parameters unvaried and 

anisotropic thermal parameters included for all non-hydrogen atoms gave 

values for jR of a® of O.O89 and 0.07^, respectively. Hydrogen atom 

positions were then recalculated and two further cycles gave values for 

and wR of 0.088 and 0.073, respectively. 

A statistical analysis of , where as a function 

of scattering angle and magnitude of indicated that the relative 

wei^ting scheme used was reasonable. An attempt to refine the 

positional and thermal parameters the methyl hydrogen atoms was not 

o 
entirely successful. The average refined C-H distance of 1.01 A was 

used in subsequent calculations of the positions of the methyl hydrogen 

atoms, however. During the final refinement the positional parameters 

of hydrogen atoms were calculated and not varied because the agree

ment between observed and calculated structure amplitudes seemed 

insensitive to these parameters. Two final cycles of refinement gave 

values for and of O.O88 and 0.073, respectively. Two final cycles 

of refinement using 802 "observed" reflections (those such that > 

30p 2) gave values for and wR of O.OU8 and O.O6O, respectively, with 
—o 

no significant shifts in the final refined parameters. A final electron 

density difference map revealed no peaks greater than 0.ke~/A^.  The 

final standard deviation for an observation of unit weight ([ZoiA^/ 

1 / 
ChO-NV)] ^ where NO is the number of observations [1397] and NV is the 



www.manaraa.com

67 

number of variables [88]) was 1.26e". During the final cycle the largest 

shift in any parameter was less than 0.01 times its own sigma. 

A listing of the final refined positional and thermal parameters 

for the non-hydrogen atoms along with their standard deviations as 

derived from the inverse matrix of the finaJ. least-squares refinement 

cycle is provided in Appendix A. Root-mean—square components of thermal 

displacement along the principal axes are given in Table 11. A listing 

of all 1397 unique recorded and calculated structure amplitudes is found 

in Appendix B. 

Table 11. Root-mean-square components of thermal displacement (a) along 
principal axes for refined atoms in Ni(EMG)2 

1 

Axis 

2 3 

Ni 0.185 0.213 O.2UO 

N(l)  0.176 0.232 0.238 
N(2) 0.201 0.231 0.253 

0(1) 0.206 O.2U5 0.315 
0(2) 0.200 O.2U9 0.306 

c( i )  0.219 0.222 O.2U8 
C(2) 0.20k 0.211 O.2U5 
CC3) 0.219 0.271 0.311 
C(4) 0.206 0.261 0.274 
CC5) 0.230 0.304 0.352 

h. Description of the structure 

Interatomic distances and angles with standard deviations are given 

in Table 12 and illustrated in Figure 10. The standard deviations in the 
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Figure 10. Interatomic distances and angles in NiCEMG)2 
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Table 12. Interatomic distances and angles in MifEMG^z 

Distances (&) 

Without thermal With thermal 
motion motion * 

Ni-N(l) 1.861 Çh) 1.860 (4) 
Ni-NC2) 1.862 (U) 1.865 (4) 
ïï(l)-0(l) 1.350 (5) 1.369 (5) 
N(2)-0(2) 1.344 (5) 1.358 (5) 
N(l)-CCl) 1.295 C6} 1.297 (6) 
C(2)-N(2) 1.301 (5) 1.304 C6) 
C(2)-C(l) 1.462 (7) 1.466 (7) 
C(1)-CC3) 1.499 (7) 1.519 (7) 
C(2)-C(U) 1.506 (7) 1.520 (7) 
C(U)-C(5) 1.512 (8) 1.539 (8) 
0(2)-0(l') 2.454 (5) 2.454 (5) 

Angles (°) 

Ni-N(l)-0(1) . 123.9 (3) Ni-N(2)-0(2) 123.9 (3) 

Ni-N(l)-C(l) 116.6 (3) ITi-N(2)-C(2) 115.9 C3) 

NCl)-0(l)-0(2') 97.2 (3) N(2)-0(2)-0(l') 97.5 (3) 

c(i)-n(i)-o(i) 119.5 (U) C(2)-N(2)-0(2) 120.2 (4) 

H(l)-C(l)-C(2) 112.1 (U) N(2)-C(2)-C(l) 112.8 (4) 

N(l)-C(l)-C(3) 123.5 (5) N(2)-C(2)-C(4) 123.2 (4) 

C(3)-C(l)-C(2) 12U.U (5) C(4)-C(2)-C(1) 123.9 (4) 

C(2)-C(U)-C(5) 111.7 (5) N(l)-ÎIi-N(2) 82.5 C2) 

•Assuming a riding model with the second atom given riding 
on the first. 

distances and angles were calculated using the variance-covariance matrix 

and OR FFE ClT)» and include errors in the lattice constants. An 
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indication of the directions and root-mean-sq.uare amplitudes of vibration 

of the refined atoms is provided by Figure 11. The packing of the 

molecules in the crystal is illustrated in Figure 12. 

The present study reveals a much longer 0 0 distance than vas 

previously reported (33). The value of 2.^5^ A found in this study agrees 

well with the distance expected from the infrared spectral study of 

Cat on and Banks (21), and with the 2.453 0 0 distance (l8) in Ni(G)2. 

There is no significant difference in the N-0 distances, indicating a 

symmetrical hydrogen bond. A symmetrical hydrogen bond is also suggested 

by the 0 0 distance. The thermal motion of the oxygen atoms suggests 

that the hydrogen bond is not linear. A non-linear hydrogen bond seems 

reasonable on considering the fact that the N-0-0 angles in Ni(EMG)2 

average 7.2® smaller than the 10U.5° H-O-H angle in HgO. 

A critical examination of chemically equivalent bonds reveals no 

significant differences, and good agreement with the corresponding 

distances in other oximes, vic-dioximes, and metal(ll)-vic-dioxime 

complexes. 

A significant feature of the complex is the delocalization of the 

two C=N bonds over the C-C bond in the chelate ring, which is evidenced 

in the shortening of the C-C bond from the normal single bond distance 

and a lengthening of the C=N bonds from the normal double bond length. 

Similar effects have been observed in the glyoxime complexes of 

nickel (l8, 52), palladium (19) and platinum (31), and in 

dimethylglyoxime (39)-
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Figure 11. Stereo illustration of the thermal motion in Ni(EMG)2 with ellipsoids scaled to 
enclose 50% probability. 
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Figure 12. Stereo illustration of the crystal packing of Ni(EMG)a 
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A careful examination of the thermal parameters reveals nothing 

unusual or unexpected in the thermal motion of thé heavy atoms. The 

motion of the atoms in the chelate ring is more nearly isotropic than 

that of the atoms bound to the ring. The motion of the oxygen atoms 

and the carbon atoms bound to the ring is considerably more restricted 

in the direction of the bonds Joining them to the ring. The motion of 

the terminal carbon atom of the ethyl group reflects a significant 

contribution from a wagging of the entire ethyl group. For the nickel 

atom, the largest amplitude of motion is normal to the molecular plane. 

Calculation of interatomic distances corrected for thermal motion 

assuming a riding model does not significantly change bond distances in 

the chelate ring, but results in increases of about 0.02 & in the W-O 

bonds and the C-C bonds external to the ring. 

Calculation of the best mean plane through the molecule indicates 

that the molecule is planar with the exception of the ethyl group and 

oxygen atom 0(l), which lies only 0.02 %. out of the plane. The equation 

of the best plane throu^ the planar portion of the molecule and the 

distances of the atoms from this plane are given in Table 13. 

Table 13. Equation of the least-squares plane through, the planar 
portion of the ïïi(EMG)2 molecule and deviations of the 
atoms from the plane 

3.286X - 2.T^2y + 7.950z = 0.0& 

^Equation is in fractional coordinates, for the molecule at the 
origin, referred to the non-orthownal crystallographic axes. 
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Table 13» (Continued) 

d(&) 
^0' 

Ni 0.0000 0.00 
N(l) 0.0016 o.Uo 
NC2) -0.0009 0.23 
C(l] -0.004l 0.81 = 5.71 
C(2) -0.0078 1.55 
0(3) 0.0071 1.26 
cW -0.0757 
0(5) -1.5017 
0(1) -0.0242 
0(2) 0.0033 0.92 

Atoms for which to values are not given were not used in 
the calculation of the best mean plane. 

D. The Crystal and Molecular Structure of ]Ji(DMG)2 

In view of the similarity in 0-H stretching frequencies for 

Ni(DMG) 2 and Ni(EMG)2 and the similarity in 0 0 distances in Ni(EMG) 2 

(2.453 a) and Ni(G)2 (.2.h^k a) it seemed likely that the 0 0 distance 

in Ni(DMG)2 was not as short as the 2.U0 A reported (36, 90). The 

structure of this complex was therefore redetermined. 

1. Apparatus and materials 

a. Instrumentation and apparatus A Nonius precession camera was 

used to obtain preliminary photographs. Intensity data were collected 

on a fully automated Hilger-Watts four circle diffractometer equipped 

with a scintillation counter and interfaced with an SDS-910 computer in 

a real time mode. Calculations were performed on an IBM 360/65 

computer. 
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b. Chemi cals The preparation of HiCDMG)2 vas by R. W. Vender 

Haar C82) following the standard analytical procedure (28). The product 

had been recrystaliized from 1,2-dichlorobenzene and existed as needle

like crystals of small cross section. 

2. Experimental procedures 

a. Preparation of NiÇPMG)2 A suitable crystal was selected and 

motinted on the end of a thin quartz fiber with DuPont Duco brand cement. 

The complex was first tested for a reaction with the cement and none was 

found. 

b. Collection of data Preliminary precession photographs 

exhibited mimn Laue symmetry, indicating an orthorhombic space group. 

Systematic absences of (hk&) for ̂  ^ ^ odd, (Ok&) for ̂  ^ odd and 

(hO_^) for h + ̂  odd indicated two possible space groups D^ - lb am 

2X and - Iba2, in agreement with the previous determination (36). The 

hi^er space group lb am was chosen initially and the successful refine

ment of the structure in this space group confirmed the choice. The 

unit cell parameters are: 

a = 16.5835 ± 0.002k A, 

b = IO.uu12 ± O.oou6 A, 

2 = 6.1+753 ± 0.0016 A. 

These parameters and their standard deviations were obtained by a least-

squares fit (88) to 12 independent reflection angles whose centers were 

determined by left-ri^t top-bottom beam splitting on a previously aligned 

Hilger-Watts four circle di ffract omet er (Mo radiation, A = O.7io69 A). 
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Any error in the instrumental zero was eliminated "by centering the 

reflection at both. +26 and -26. Other crystal data are: 

M = 288.92 g/mole, 4, V = 1121.2 P, = 1.711 g/cm^, ,FC000] = 600 e". 

For data collection the selected crystal, with approximate dimen

sions 0.05 X 0.07 X 0.17 mm, was mounted with ̂  along the spindle axis. 

Data were collected at room temperature using the fully automated 

Hilger-Watts di ffract omet er. One octant of data was recorded using Zr-

filtered Mo radiation within a 26 sphere of 50° (sin 6/X = 0.59^7). 

The 6-26 step-scan techniq.ue, 0.01°/step counting for 0.U096 sec./step, 

was employed with a take-off angle of U.5°- Variable step symmetric scan 

ranges were used with the number of steps determined as follows : ̂  = 

50 + 2 per °6. Stationary-crystal stationary-counter background 

measurements were made by counting for one-half the total scan time at 

each end of the scan. As a check on the reliability of the data 80 

reflections from another octant were also measured; the reproducibility 

was excellent. A total of 639 reflections were measured. 

As a general check on electronic and crystal stability, the 

intensities of three standard reflections were measured periodically 

during the data collection. Monitoring options based on these standard 

counts were used to maintain crystal alignment and to stop the data 

collection if standard counts fell below statistically allowed 

fluctuations. No decrease in any of the standards due to decomposition 

was observed during data collection. 

The intensity data were corrected for Lorentz-polarization effects. 

The absorption coefficient, y, is 17-39 cm~^, and an absorption 
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correction Cl5l was made using ABCOR. The maximum and minimum trans

mission factors were 0.906 and 0.75^, respectively. The estimated error 

in each intensity was calculated by [crCl)]^ = [C^ + + C0.05 + 

Co.05 where and are the total count and background count 

respectively. The individual values of from equivalent sets were 

then averaged to give 598 independent values. The estimated 

standard deviation in each structure factor was calculated from the mean 

deviation of intensity by the method of finite differences (89). The 

reciprocals of the structure factor vsiriances were used as wei^ts in 

the least-squares refinement. 

3. Solution and refinement of the structure 

The requirements of symmetry restrict the nickel atoms to special 

positions with symmetry 2/m and the remaining atoms except hydrogen to 

the mirror planes, the minimum molecular symmetry being ̂ /m. The 

positions of all atoms except hydrogen were obtained from a three-

dimensional difference map, and were refined by full matrix least-

squares techniques (i6) with isotropic thermal parameters to a conven

tional discrepancy factor of 

1= 5: l l4 l - lF^l l /ZlF^l  =  0 .143,  

and a weif^ted R_-factor of 

wr = [stoclf^i-lf^n^/zcol^l^] = 0.098. 

The relativistic Dirac-Slater X-ray scattering factors for neutral atoms 

computed by Cromer and Waber (2U) were used with those of nickel 
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modified for the real and imaginary parts of anomalo'us dispersion (,23). 

An option in the refinement program was employed which allowed the 

exclusion from the refinement of any reflection not meeting a certain 

criterion; the criterion used was | |^|-|Fg| | < and resulted in the 
— — —o 

exclusion of two reflections, (200) and (321). Because of the proximity 

of to the spindle axis during data collection, and the fact the 

orientation matrix for the diffractometer becomes indeterminate in 4) for 

low angle reflections very near to x = 90°, the value of 4) for (200) was 

not correct and the reflection was not centered during measurement. 

This reflection was discarded from the refinement. The other reflection, 

(321), was not excluded and, in the later stages of refinement, met the 

criterion for retaining a reflection. 

Inclusion of anisotropic thermal parameters (symmetiy requires 

that 6(13) and S(23) for all atoms be zero) for nickel and nitrogen and 

two cycles of refinement gave values for and wR of 0.135 and 0.093, 

respectively. At this point the hydroxy 1 hydrogen atom was included. 

It was placed midway between the oxygen atoms and given an isotropic ̂  

similar to those of the oxygens. Inclusion of anisotropic thermal 

parameters for the oxygen and ring carbon atoms and two cycles of 

refinement gave values for R and a® of 0.135 and 0.092, respectively. 

An electron density difference map failed to reveal the locations 

of hydrogen atoms. Their positions were therefore calculated. A free-

rotation model was used for the methyl groups. Six half-hydrogen atoms 

were placed symmetrically about the methyl carbon atoms. The H—C-C angle 

was taken as 109-5® and the C-H distance was taken as 1.01 A. These 
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atoms vere assigned isotropic thermal parameters similar to those of 

the atoms to which they are hoimd. The calculated positions of th.e 

methyl hydrogen atoms were such, that the requirements of symmetry 

Cthe mirror plane) were adhered to, with two of the half-hydrogens "being 

located in the mirror at ̂  = 0.0. Two cycles of refinement with 

anisotropic thermal parameters for all non-^hydrogen atoms gave values 

for and wjR of 0.122 and 0.082, respectively. Recalculation of 

hydrogen atom positions followed "by two further cycles of refinement 

gave values for and a® of 0.122 and 0.082, respectively. 

A statistical analysis of OIA^, where = (I^L-LZ^I)^» as a 

function of scattering angle and magnitude of revealed some 

systematic fluctuations for low values of |^| . The refinement wei^ts 

were therefore adjusted using the procedure described in the section on 

the refinement of the structure of Cu(DMG) z-dg. 

Two cycles of refinement using the adjusted weights gave values for 

R and of 0.121 and 0.068, respectively. Hydrogen atom positions were 

recalculated and two cycles of refinement with the hydro xyl hydrogen atom 

parameters allowed to vary gave values for ̂  and a)R of 0.121 and O.O68, 

respectively. The values for the hydroxy 1 hydrogen atom parameters were 

reasonable and these parameters were varied throu^ the final cycle. 

The final cycle gave values for jR and wR^ of 0.121 and O.O68, 

respectively. Discarding reflections with = 0.0 from the calculation 

of the agreement factors gave values for R_ and a)R_ of 0.104 and O.O63, 

respectively. 
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Two cycles of refinement using 320 "obserVed" reflections [those 

such that > 2a  ̂ 2) and the original -weights gave values for and uR 
— —o_ 

of 0.052 and 0.056, respectively, with no significant shifts in any of 

the parameters. This suggests that the structure is better determined 

than the final value of ̂  indicates, with the reflections with low 

intensities contributing considerably to the value of but little to the 

refinement. A final electron density difference map revealed no peaks 

greater than 0.8e"/X.^. The final standard deviation for an observation 

of unit wei^t ( [ZojA^/CTIO-NV)] where HO is the number of observations 

[597] and NV is the number of variables [56]) was 0.983e". During the 

final cycle the largest shift in any parameter was less than 0.01 times 

its own sigma. 

A listing of the final refined positional and thermal parameters 

for the non-hydrogen atoms along with their standard deviations as 

derived from the inverse matrix of the final least-squares refinement 

cycle is provided in Appendix A. The final refined parameters for the 

hydroxyl hydrogen atom are: 

x zl ^ 1 

0.1140 (8U) 0.1872 (110) 0 6.268 (3753) 

The numbers in parentheses are the estimated standard deviations in the 

least significant digits. Root-mean-square components of thermal 

displacement along the principal axes are (^iven in Table lU. A listing 

of ft"II 1397 unique recorded and calculated structure amplitudes is 

provided in Appendix B. 
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Table l4. Root-mean-soLuare components of thermal displacement (a) 
along principal axes for refined atoms in NiClMG^z. 

Axis 

Ni 0.182 0.200 0.213 

B(l) 0.198 0.213 0.228 
N(2) 0.190 0.207 0.231 

0(1) 0.203 O.2U7 0.251 
0(2) 0.219 0.255 0.263 

C(l) 0.176 0.22lt 0.233 
C(2) 0.188 0.198 O.2I+3 
C(3) O.2I45 O.2U6 0.272 
C(4) O.21U 0.278 0.281 

H(l) 0.282 

k. Description of the structure 

Interatomic distances and angles vith standard deviations are given 

in Table 15 and illustrated in Figure 13. The standard déviations in the 

Table 1$. Interatomic distances and angles in Ni(DMG)% 

Distances {%.) 

Without thermal With thermal 
motion motion®-

Ni-N(l) 1.855 (6) 1.858 C6) 
Ni-KC2) 1.865 C7) 1.868 CT) 

K(l)-OCl) 1.328 C9) 1.342 (9) 

^Assuming a riding model with the second atom riding on 
the first. 
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Table I5. (Continued) 

Without thermal With, thermal 

_ motion motion^ 

N(2)-0(2) 1.354. (9) 1.374 (9) 
C(l)-N(l) 1.302 (11) 1.306 (12) 
N(2)-C(2) 1.287 (11) 1.288 (12) 
C(l)-C(3) 1.507 (14) 1.523 (14) 
C(2)-C(U) 1.471 (13) 1.493 (13) 
C(2)-C(l) 1.443 (12) 1.446 (13) 
0(l)-0(2') 2.471 (9) 2.473 (9) 
0(1)-H(1) 1.233 (124) 
0(2)-H(l') 1.259 (129) 

Angles :  ( ° )  

Ni-N(l)-0(1) 12U.6 (6) Ni-N(2)-0(2) 123.5 (6) 

Ni-N(l)-C(l) 115.1 (7) Ni-N(2)-C(2) 117.0 (7) 

C(l)-N(l)-0(1) 120.3 (7) C(2)-N(2)-0(2) 119.5 (8) 

N(l)-C(l)-C(2) 114.2 (9) N(2)-C(2)-C(l) 111.4 (9) 

N(l)-C(l)-C(3) 121.2 (9) W(2)-C(2)-C(4) 123.7 (9) 

C(3)-C(l)-C(2) 124.6 (10) C(4)-C(2)-C(l) 124.8 (9) 

N(l)-0(l)-0(2') 97.3 (5) N(2)-0(2)-0(l') 96.9 (5) 

K(l)-0(1)-H(l) 105.0 (55) N(2)-0(2)-H(l') 104.5 (51) 

0(l)-H(l)-0(2») 164.7 (104) N(l)-Ni-N{2) 82.3 (4) 

distances ajid angles were calculated using the variance-covariance matrix 

and OR FFE (17) > and include errors in the lattice constants. An 

indication of the directions and root-mean-square amplitudes of vibration 



www.manaraa.com

ho)—1233 
Q(2)-T:259 ~~0(I) 

C(3) 

C(4) 

CD 
w 
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Figure 13. Interatomic distances and angles in Ni(DMG)2 
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of the refined atoms is provided by Figures l4 and 15. The stacking of 

molecules in the crystal is also illustrated in Figure 15- The crystal 

packing is illustrated in Figure l6. 

This study reveals, as expected, a significantly longer 0 0 

o 
distance than previously reported (36, 90). The value of 2.k71 A found 

in this study agrees well with the 0 0 distances in ]Si(SiG)2 and Ni (0)2-

The difference in the N-0 distances may be significant but in the absence 

of evidence to the contrary, the hydrogen bond must be considered to be 

symmetrical. The final refined position of the hydroxyl hydrogen atom 

indicates a symmetrical hydrogen bond, and the 0 0 distance is 

sufficiently short so as to be compatible with such a conclusion. The 

thermal motion of oxygen atom 0(2) and the position of the hydroxyl 

hydrogen are suggestive of a non-linear hydrogen bond. The N-O-H angles 

average 10U.8°, a value very close to the 10U.5° H-O-H angle in H2O, 

lending credence to the refined position of this hydrogen atom and 

supporting the conclusion of a non-linear bond. The O-H-0 angle is l64.7°. 

A critical examination of chemically equivalent bonds reveals only 

the one possibly significant difference, that in the N-0 distances. 

Assuming equivalent N-0 distances in the isolated molecule, the molecule 

must be considered to have symmetry. The bond distances agree well 

with their equivalents in other oximes, vic-dioximes, and metal(ll)-

vic-dioxime complexes. 

As in other metal(ll )-vic-dioximes, the C-C bond in the ring in 

Ni(DMG)2 is significantly shorter than the C-C single bond distance. 

This was also found to be the case for Ni(EMG)g as described earlier. 
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Figure lU. Stereo illustration of the thermal motion of Ni(DMG)2 with ellipsoids scaled to 
enclose ^0% probability 
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Figure 15. Illustration of the stacking of successive layers in Ni(DMG)2 with ellipsoids 
scaled to enclose 50^ probability 
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Figure l6. Stereo illustration of the crystal packing of NiCDMG)2 
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Delocalization of the C=Iî bonds over the chelate ring is apparently a 

feature common to all metalCll)-vic-dioximes with the possible exception 

of CuCDMG)2- This matter is discussed further below. 

A careful examinatioh of the thermal parameters reveals nothing 

unusual with the possible exception of the motion of atom cCl)• This 

atom has an unusually large component of thermal motion along the C(l)-

ïï(l) bond which cannot readily be accounted for and must therefore be 

ascribed to merely fitting some systematic error in the data. For all 

of the atoms at least one principal axis lies within 13° of a bond. 

The magnitudes of the root-mean-sq.uare components of vibration are 

reasonable and are larger for atoms 0(1), 0(2), C(3) and C(U) than for 

atoms in the ring. The motion of these latter four atoms is also more 

anisotropic, their motion being more restricted along the H-O and C-C 

bonds. The atoms in the chelate ring, with the exception of C(l), 

exhibit nearly isotropic motion with the smallest amplitude of motion 

normal to the ring. 

Calculation of interatomic distances corrected for thermal motion 

assuming a riding model does not significantly change distances in the 

chelate ring, but results in increases of about 0.02 %. in the N-0 bonds 

and the C-C bonds to the methyl carbon atoms. 

E. Results and Discussion 

For comparison purposes and easy reference, a summary of the most 

recently available structural information on metal(Il)-vic-dioximes, in 

the form of interatomic distances and including the results of this 
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study, is given in Table l6. In th.e case of CuCDMG) 2 the results of 

another recent study (8I) aré also included- Estimated standard devi

ations as reported have also been included in order to permit statistical 

comparisons. 

It seems apparent that the hydrogen bonding in the nickelCll)-vic-

dioximes is symmetrical. If it is not, then the asymmetry must be very 

slight. It seems eq.ually apparent that the hydrogen bonding in the 

palladium(ll)- and platinum(ll)-vic-dioximes is aisymmetrical. For 

CuCDMG)2 the situation is complicated by dimer formation. In the solid 

complex the hydrogen bonds are apparently both asymmetrical. 

The metal(II)-vic-dioximes are perhaps unique in permitting the 

direct observation of increasing oxygen-oxygen repulsions as the 0 0 

distance decreases. Considering only the Ki, Pd, and Ft complexes for 

which the structures can be considered well determined [Ni(0)2, Ni(DMG)2, 

Ni(EMG)2, Pd(G)2 and Pt(G)2], an examination of the C-N-0 angles reveals 

an interesting trend. For the Ni, Pd, and Pt complexes these angles 

average 120.U ± 0.2°, 122.0 ± 0.4° and 123.1 ± I.06, respectively. The 

differences in the C-N-0 angles for the pairs Ni-Pd, Ni-Pt, and 

Pd-Pt must be considered highly significant, significant, and not 

significant, respectively. The most logical explanation for this 

behavior is that oxygen-oxygen repulsions counteract, to a certain 

extent, the effect of decreasing size of the metal ion and result in a 

decrease in the C-N-0 angle. 

Another feature of the metal(11)-vic-dioximes is a delocalization 

of the C-N double bonds over the chelate rings. This effect has been 
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Table l6. Interatomic distances Ca) in some metal(II)-vic-dioximes 

Compound M-M^ M-UCl)^ M-IIC2) KCl)-O(l) 

Ni(G)2 1.868 Ck) 1.880 (4) 1.343 (5) 

Ni(DMG)2 3.238 (1) 1.855 c6) 1.865 (7) 1.328 (9) 

Ni(MG)2 1.861 (U) 1.862 (4) 1.350 (5) 

Pd(G)2 1.957 (7) 
1.991 (8) 

1.953 (9) 
1.958 (7) 

1.337 (12) 
1.277 (13) 

Pd(DMG)2 3.26 (1) 1.99 (2) 1.93 (2) 1.33 (3) 

Pt(G)2 2.013 (l4) 1.968 (l4) 1.356 (21) 

Pt(DMG)2 3.23 (1) 1.95 (4) 1.93 (4) 1.24 (6) 

CU(LMG)2 2.29k (3) 1.949 (3) 
1.968 (3) 

1.947 (3) 
1.943 (3) 

1.367 (4) 
1.389 (4) 

2.301 (3) 1.946 (4) 
1.968 (4) 

1.950 (4) 
1.946 (4) 

1.373 (5) 
1.385 (5) 

Cu(DMG) 2~d2 2.304 (7) 1.972 (9) 
1.976 (9) 

1.920 (11) 
1.926 (11) 

1.382 (10) 
1.375 (11) 

ôr Cii(DMG)2 and Cu.(DMG)2—dz the Cu—0(2') distance is given; 
all values in the table have units of 

T̂he lack of consistency in the literature with regard to labelling 
of atoms in metal(II)—vie—dioximes necessitated adoption of the 
scheme used in this work for Ni(EMG)2. 
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Table l6. (Continued) 

NC2)-0C2) KC1)-CCI) N(.2)-C(2) 

1.350 (5) 

1.354 (9) 

1.344 (5) 

1.384 (12) 
1.372 (12) 

1.37 (3) 

1.332 (22) 

1.31 (6) 

1.353 (4) 
1.333 (4) 

1.345 (5) 
1.331 (5) 

1.378 (10) 
1.326 (10) 

1.303 (6) 

1.302 (11) 

1.295 (6) 

1.321 (12) 
1.319 (16) 

1.31 (4) 

1.286 (28) 

1.38 (9) 

1.289 (5) 
1.283 (5) 

1.284 (6) 
1.278 (6) 

1.265 (12) 
1.296 (12) 

1.277 (7) 

1.287 (11) 

1.301 (5) 

1.273 (13) 
1.271 (15) 

1.31 (4) 

1.326 (30) 

1.27 (9) 

1.294 (5) 
1.299 (5) 

1.294 (7) 
1.304 (6) 

1.314 (12) 
1.305 (12) 

C(l)-C(2) 

1.435 (7) 

1.443 (12) 

1.462 (7) 

1.471 (l4) 
1.492 (16) 

1.47 (4) 

1.453 (31) 

1.57 (10) 

1-481 (5) 
1.486 (5) 

1.495 (7) 
1.487 (7) 

1.508 (15) 
1.445 (l4) 

CC1)-C(3) 

1.507 (14) 

1.499 (7) 

1.54 (5) 

1.47 (10) 

1.483 (6) 
1.494 (6) 

1.488 (8) 
1.491 (8) 

1.493 (15) 
1.513 (14) 
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cC2)-cC4) cC4)-cC5) 0Cl)-0(2) oC3)-^C4) RW) 

2.453 (6) 3.9 

1.471 (13) 2.471 (9) 5.2 

1.506 (7) 1.512 (8) 2.454 (5) 4.8 

2.599 (12) 4.6 
2.659 (12) 

1.55 (4) 2.59 (3) 7. 

2.655 (21) 4.3 

1.46 (10) 3.03 (6) 7. 

1.488 (6) 2.547 (4) 2.699 (4) 3.8 
1.494 (5) 

1.481 (7) 2.526 (5) 2.694 (5) 6.3 
1.487 (7) 

1.459 (13) 2.569 (11) 2.716 (11) 8.4 
1.536 (15) 
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Table l6. CContinued) 

Reference Comments 

18 

This work 

This work 

19 Molecule at 0, 0, 0 
Molecule at 

90 

31 

3h 

This work Plane 
Plane II 

8l Plane I 
Plane II 

This work Plane I 
Plane II 

^Plane I contains the oxypren atom bound to the copper atom 
in the other half of the dimer-
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observed for complexes of NiCll), PdCH}, and Pt(ll). In the case of 

CuCDMG)2 however, the amount of this delocalization is not as large as 

in other conçlexes for which the structures are well determined. This 

is apparent from an examination of the C-N and especially the C-C bond 

distances in the chelate rings of these complexes. A recent molecular 

orbital calculation (66] for CuCdMG)2, assuming a planar molecule, 

reveals a strong metal-ligand TT bond and TT delocalization over the 

entire ring. It seems reasonable, therefore, to conclude that, in 

solid CU(DMG)2» non-planarity resulting from distortions on dimerization 

may lead to a significant decrease in the TT delocalization. The 

infrared spectra of Caton (20) reveal a shift in the C-C stretch in 

Cu(DMG)2 on going from the solid to solution. The C-C stretching 

frequency shifts from l$kb cm""^ to 1555 cm~^, suggesting that this bond 

is stronger in solution. Whether the increase in energy with greater 

delocalization is large is not certain, but some energy gain is certainly 

to be expected and would help to provide the energy necessary (69) for 

Cu(DMG)2 to be as soluble as Ni(DMG)2 in inert solvents. 
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VI. CHEMICAL REACTIVITY MD IITFRAEED SPECTRAL 
STUDIES OF SOME PALLADIIMÇII)^VIC~DIOXIMES 

Cat on and Banks (21) interpreted the lack of reactivity of the 

hydroxyl hydrogen atoms of CuCDMG) 2 in solution to mean that "both of 

the hydrogen bonds in Cu(DMG) 2 rearrange on dissolution to become 

similar to those in NiCDMG) 2 and Ni(EMG) 2. The implied, but unstated, 

assumption was that the hydroxyl hydrogen in the shorter hydrogen bond 

in solid CU(DMG)2 is reactive. The infrared spectra of CU(DMG)2 in 

the solid and in solution indicate that only the longer bond 

rearranges (21) so that both hydrogen bonds in solution are similar to 

the shorter bond in the solid. If this is indeed the case, then the 

hydroxyl hydrogen atom in the shorter .hydrogen bond in solid CU(DMG)2 

must necessarily be unreactive. Because the hydrogen bonds in 

Pd(G)2 (19) and Pd(DMG)2 (56, 90) were known to be only sli^tly longer 

than the shorter hydrogen bond in solid Cu(DMG) 2, the reactivities of 

the hydroxyl hydrogen atoms in several PdÇlI)-vic-dioximes were studied 

in an attempt to show that only the longer bond in solid CUCSMG)2 is 

reactive. In order to confirm the similarity of the hydrogen bonds in 

the complexes studied, infrared spectra were obtained in the region 

from UOOO to 6OO cm"^ and assignments were made for the OH stretching 

modes. The details and results of this study follow. 
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A. Apparatios and MateriaJ.s 

1. Instziment at ion and apparatus 

Infrared spectra in the region UQOO-600 cm~^ were obtained on a 

Beckman IE-7 spectrophotometer. 

2. Chemi cals 

Glyoxime vas obtained from J. T. Baker as a 'Baker Grade' reagent. 

The commercial product was recrystallized from ethanol prior to use. 

Pd(DMG)2, Pd(Niox)2» Pd(Heptox)2j Pd(a-Benzil)2» and Pd(a-Furil)2 

were prepared "by R. P. Vander Wal (83) of this Laboratoiy according to 

the following procedures. Pd(DMG)2 was prepared using the standard 

analytical procedure (28). Pd(Niox)2 was prepared using the procedure 

of Voter, et al. (85). Pd(Heptdx)2 was prepared using the procedure 

of Voter and Banks (84). Pd(a-Benzil)2 was prepared using the procedure 

of Banks, et al. (U). Pd(a-Furil)2 was prepared using the procedure of 

Reed and Banks {6k). All of the existing Pd(ll) complexes had been 

recrystallized from 1,2-dichlorobenzene and did not require further 

treatment or purification. 

B. Experimental Procedures 

Pd(G)2 was not available and therefore had to be synthesized prior 

to the reactivity and spectral studies. The following procedure was 

found to give good results. PdClz was dissolved in the minimum 
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necessary amount of 1:1 ECl-SgO. To this solution, a stoichiometric 

amount of recrystallized glyoxime in ethanol solution was added. 

Pd(G)2 was then precipitated by adjusting the acidity to a pH of 6 with 

NaOH. The finely divided amorphous precipitate was filtered and washed 

with 1:1 ethanol-water and then with ethanol and dried. The resulting 

dark brown solid was recrystallized from dilute acetic acid to give 

needle-shaped yellow crystals of very small cross section. The Pd(G)2 

thus prepared was used without further treatment in the spectral and 

reactivity studies. 

1. Reactivity study 

The reactivities of the six Pd(ll) complexes were tested by placing 

approximately 20 mg. of the complexes in small test tubes and adding 20 

drops of phenyl isocyanate or acetic anhydride. Any immediate reaction 

was noted and the test tubes were stoppered and allowed to stand for 

three days, at which time any subsequent reactions were noted. 

2. Spectral studies 

Infrared spectra in the region UOOO-600 cm~^ were obtained by 

grinding small amounts of the complexes with KBr to a very fine 

particle size and pressing the mixture into a transparent disk. The 

resulting spectra contained a band near 1625 cm~^ due to water in the 

disk and spectra in the region 2000-1300 cm"^ were consequently 

obtained by mulling the complexes with halocarbon oil. 
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Due to an electronic imbalance and a contaminated atmosphere within 

the spectrophotometer, a CO2 absorption band near 2370 cm^^ frequently ap

peared in the spectra as both positive and negative "peaks". Whenever 

possible, spectra were obtained which exhibited both additive and sub-

tractive effects in order to aid in the location of absorption maxima. In 

such instances, the subtractive effect is indicated as a dotted line in 

the spectra. 

C. Results 

1. Reactivity study 

The results of this study are summarized in Table 17. None of the 

six Pd(ll) complexes studied was found to react with either acetic anhy-

drice or phenyl isocyanate. These reagents did dissolve significant 

amounts of the complexes but no decomposition of any of the complexes was 

noted, even on long standing. 

Table 17. Results of reactivity studies of some Pd(ll)-vlc-dioximes 

Reactionŝ  

Complex Acetic anhydride Phenyl isocyanate 

Immediately On standing Immediately On standing 

?d(G)2 sol. sol. sol. sol. 
Pd(DMG)2 si. sol. V. sol. si. sol. V. sol. 
Pd(Niox)2 sol. V. sol. sol. V. sol. 
Pd(Eeptox)2 sol. V. sol. sol. V. sol. 
Pd(a-Benzil)2 sol. sol. si. sol. sol. 
Pd(a-Furil)2 si. sol. si. sol. sol. sol. 

®̂ o decomposition of any of the complexes was observed, but both re
agents dissolved significant amounts of nearly all of the complexes. 

°Any reaction observed after three days standing. 

Sol, - soluble; si. sol. - slightly soluble; v. sol. - very soluble. 
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2. Infrared spectral study 

Infrared spectra of the six complexes studied are shown in Figures 17 

through 22 (.Appendix C). Frequency assignments were made for the princi

pal absorptions in the spectra. The assignments were based on comparisons 

with the spectra reported in the literature (7» 8, 21) for several 

metal ( II )-vic-dioximes and are given in Tables l8 throu^ 23. The 

infrared spectra contain bands in the region 2300-2700 cm"^ which have 

been assigned to the OH stretching mode. These bands are very broad in 

all of the spectra. The frequencies reported are for absorption maxima. 

For Pd(G)2 two OH stretching frequencies were observed, one at 

2510 cm~^ and the other at 2680 cm~^. Pd(G) 2 contains two different 

hydrogen bonds, 2.599 A and 2.659 ^ in length, respectively. The 

observation of two OH stretching frequencies is consistent with the 

known structure. In addition, the frequencies observed for Pd(G)2 agree 

well with those which are to be expected for 0 0 distances of 2.599 

and 2.659 A. The frequencies reported for the 2.5̂ 7 and 2.699 & hydrogen 

bonds in solid Cu(DMG)2 were 2382 and 2650 cm~̂ , respectively (21). For 

the remaining complexes studied the OH stretching freq,uencies occur in 

the region 2360-2UlO cm~̂ . Because of the interference of an atmospheric 

CO2 absorption band which could not be balanced out of the spectra, the 

reported frequencies are not as precisely determined as those of the 

other assigned bands. The estimated error in the assignments of the OH 

stretching frequencies is still only on the order of 20 cm~̂ , which is 

not enoû  to affect the conclusion that the hydrogen bonding in all of 
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these coBç>lexes is quite similar, and that it is nearly as strong as in 

the shorter bond in solid CuCDMG)2-

Table 18. Infrared frequency assignments for PdCo)2 

Frequency, cm"^ Assignment 

2680 OH stretch 
2510 OH stretch 
1571 CN stretch 
1524 CO stretch 
isw CN stretch 
1248 NO stretch 
1110 NO stretch 

Table 19. Infrared frequency assignments for Pd(DMG)2 

Frequency, cnf*^ Assignment 

2390 OH stretch 
1549 CN stretch 
1507 CC stretch 
1330 CN stretch 
1254 NO stretch 
1089 NO stretch 

Table 20. Infrared frequency assignments for Pd(lIiox) 2  

Frequency, cm"^ Assignment 

2390 OH stretch 
1547 CN stretch 
1505 CC stretch 
1357 CN stretch 
1245 NO stretch 
1086 NO stretch 
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Table 21. Infrared frequency assignments for Pd(Eeptox) 2 

Frequency, cm~^ Assignment 

2360 OH stretch 
15^7 CN stretch 
1499 ' CC stretch 
13^0 Œ stretch 
1250 NO stretch 
1076 HO stretch 

Table 22. Infrared frequency assignments for PdCa-Benzil); 

Frequency, cm~^ Assignment 

2UIO OH stretch 
1579 CK stretch 
1522 CC stretch 
1328 CN stretch 
1279 NO stretch 
1076 . NO stretch 

Table 23. Infrared frequency assignments for ?d(a-F-aril/2 

Frequency, cm~^ Assignment 

2370 OH stretch 
1579 CN stretch 
1513 CC stretch 
1301 CN stretch 
1227 NO stretch 
1083 NO stretch 
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D. Discussion and Concussions 

The lack of reactivity of the hydroxy 1 hydrogen atoms in the 

Pd(ll)-vic-dioximes coupled with the infrared fepectral information 

confirms the presence of strong hydrogen "bonds in these complexes. In 

addition, the data indicate that only the hydrogen atom in the longer 

hydrogen "bond in solid CuCDMG) 2 is reactive. This fact supports the 

conclusion, based on infrared spectral information, that only the longer 

hydrogen "bond in solid CU(DMG)2 rearranges on dissolution. 
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VII. SUMMAEF: 

The hydrogen "bonding in the Ni(Il)-, Pd(ll)-, and, presiamably, 

Pt(II)-vic-dioxime complexes in the solid state and in solution is 

apparently quite strong. The hydroxy 1 hydrogen atoms in the solid 

Ni(ll)- and Pd(ll)~vie-dioxime complexes are remarkably unreactive. 

The reactivity of these hydrogen atoms in Pt(ll)-vic-dioximes has not 

been investigated, but structural studies, which reveal short hydrogen 

bonds in all of the complexes, show that the hydrogen bonds in the 

Pt(G)2 complex are similar to those in the Pd(ll)-vic-dioximes. 

The hydrogen bonds in Cu(DMG)2 in solution are also apparently 

quite strong, but not as strong as those in Hi(II)-vic-dioxime 

complexes. The infrared spectra of CU(DMG)2 in the solid and in 

solution suggest that only the longer hydrogen bond in the solid re

arranges on dissolution. The lack of reactivity of the hydroxyl 

hydrogen atoms in the Pd( II ) -vic-dioximes confirms the fact that this 

is possible, and also shows that the lack of reactivity of the hydroxyl 

hydrogen atoms of Cu(DMG)2 in solution does not prove a similarity of 

the hydrogen bonds in the copper and nickel complexes in solution. 

The hydrogen bonds in solid Hi (II ) -vic-dioximes are apparently 

symmetrical. The symmetry of the nickel complexes supports this 

conclusion. The hydrogen bonds in solid Cu(,DMG)2 are apparently both 

asymmetrical. Differences in the N-0 distances in the complex, as well 

as the refined positions of the hydroxyl hydrogen atoms support this 
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conclusion. Ibgansion of thé hydrogen "bonds in CuCDMG) 2 on deliberation 

is apparently slight and only marginally significant. 

All of the metalClI)-vic-^dioximes show signs of significant ir de-r 

localization in the chelate rings, a fact vhich helps to stabilize the 

con^lexes. This is indicated "by C-W bond lengths which are longer than 

the normal double-bond length, and C-C "bond lengths in the chelate 

rings which are shorter than the normal single-bond length. 

The unusual specificity of the vic-dioximes for such metals as 

nickel and palladium is apparently the result of a combination of 

factors, the most important being a tendency toward square-planar 

coordination in the divalent state, and an ability to participate in 

metal-ligand tt bonding. These factors combine to provide extremely 

stable square planar complexes with the vic-dioximes, complexes which 

are stabilized by significant metal-ligand IT bonding, a delocalized TT 

system over the chelate ring, and strong intramolecular hydrogen bonds. 
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VIII. SUGGESTIONS FOR FUTURE WORK 

1) The vic-dioximes are ahle to form particularly strong 

complexes with transition metals in those instances when the vic-

dioximes can assume a co—planar configuration. It seems reasonable 

that one mi^t extend the utility of the vic-dioximes by developing 

extraction and/or spectrophotometric procedures for divalent metal ions 

which show tendencies toward coordination numbers higher than four. 

The use of an organic solution of a suitable vic-dioxime and some 

organic base, which would function as a neutral donor, would permit the 

formation and extraction of six-coordinate conçlexes with a sq.uare-

planar metal(II)-vic-dioxime skeleton plus two axially coordinated 

neutral donor molecules. Appropriate selection of the vic-dioxime and 

neutral donor mi^t also permit reasonably efficient separations to be 

performed rapidly and with ease. 

2) The vic-dioxime complexes of the ^valent metals provide a 

unique series of compounds in which it is possible to study relatively 

strong hydrogen bonds covering a reasonably wide range of 0 0 

distances (2.4$-2.70 %). In particular, neutron diffraction studies of 

a few selected complexes could provide valuable information on short 

hydrogen bonds, including the nature of the potential well for the 

hydrogen atom. A careful study of normal and deuterated copper 

dimethylglyoxime could provide valuable information on the source of the 

deuterium isotope effect found in short hydrogen bonds, an effect which 

is not well understood. 
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3) Far infrared spectroptLotometers are now available which. 

permit the study of this region of the electromagnetic spectrum with, a 

great deal of resolution and sensitivity. A careful and systematic 

study of the far infrared spectra of the metal(II )-vic-dioximes mi ght. 

provide considerable information on the hydrogen bonding in these 

complexes. Frequency assignments for the stretching and bending modes 

associated with the H***0 or hydrogen bond would be particularly 

valuable. By comparing the spectra of the complexes with different 

metals it should be possible to overcome the problem usually 

encountered in making such assignments, namely, the unusually small 

magnitude of deuteration shifts in these frequencies. In addition to 

information on hydrogen bonding, a careful study of this spectral region 

could also provide much information on the nature and strengths of the 

metal-nitrogen bonds in these complexes, as the metal-nitrogen stretching 

frequencies lie in the far infrared. 
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XI. APPENDIX A 

Table 2k. Final refined positional and thermal parameters 
for Cu(DMGÎ2-d2 with, the significant figures of 
the standard deviations 

Table 25. Final refined positional and thermal parameters 
for cu(dmg)2 with the significant figures of 
the standard deviations 

Table 26. Final refined positional and thermal parameters 
for Ni(EMG)2 with ̂the significant figures of 
the standard deviations 

Table 2%. Final refined positional and thermal parameters 
for Ni(DMG)2 with the significant figures of 
the standard deviations 



www.manaraa.com

Table 2k .  Final refined positional and thermal parameters for Cu(DMG)2-d2 with (below) the 
significant figures of the standard deviations 

X/A Y/B Z/C B11 B22 833 B12 B13 B23 

cu C. P26d 
1 

0. 0935 
1 

C. 3650 
2 

0.0080 
2 

0. C030 
1 

0.0225 
Ç 

-0.0)06 
1 

0.0065 
2 

-0.0003 
2 

CI u 0. 2269 0. C135 0. 2272 0.0190 0. €040 0.0254 0.0028 0.0057 0.0010 
CI u 

16 
0. 

1 c 18 26 8 36 12 23 15 

C( 21 0 .  3639 -0. CC74 0. 1886 0.0171 0. C061 0.0475 0.0010 0.0187 -0.0032 C( 21 
13 P 17 21 8 41 10 25 14 

C( 11 0. 11 39 -0. C45 7 0. 2297 0.02C4 0. 0029 0.0 196 -0.0013 C.0103 -0.0008 C( 11 
1 b n : 5 26 7 32 11 23 12 

C(4I c. 1167 -c. 1252 0. 1585 0.0165 0. 00 38 0.0244 0.0022 0.0049 -0.0031 C(4I 
12 8 15 20 6 31 9 20 13 

N( n n. 2035 0. 079 5 0. 2906 0.0127 0. 0045 0.0281 -0.0029 0.0096 0.0014 N( n 
I 0 Q 13 16 6 28 9 17 11 

NI 21 0. 0140 -0. 0149 0. 2952 0.0133 0. 0066 0.0244 -0.0000 0.0091 o.oooa 
NI 21 

11 7 12 18 8 29 9 19 11 

n( 1) 0 .  2974 0. 1407 c .  3035 0.0154 0. 0062 0.05C9 -0.0019 0.0177 -0.0039 n( 1) 
q 6 12 14 5 29 7 17 10 

0(2) -0 .  0938  - 0 .  C643 c .  3071  0.3124 0. 0056 0.0317 -0.0010 0.0076 -0.0003 0(2) 
R K IC 12 5 23 6 14 9 

C(5) -n, 2126 0 .  1828 0 .  34 3 8 0.0135 0. C048 0.0207 -0.000 4- 0.0020 -0.0002 C(5) 
14 10 16 23 8 33 12 21 14 

C(6» — 0 « 3583 0 .  2C89 0 .  3505 0.0135 0. 0058 0.0422 0.0016 0.0080 -0.0051 C(6» — 0 « 
13 7 16 21 7 41 10 23 15 

C( 71 -0. C976 0 .  2369 0. 356 2 0.0161 0. 0041 0.0167 -0.0011 -0.0039 0.0016 C( 71 
17 8 14 26 B 30 12 23 13 

CI 81 -0 .  1180 0 .  3257 0. 3396 0.0262 0. o
 

o
 

0.0391 0 .0003 0.0196 0.0026 CI 81 -0 .  
14 S 19 29 8 40 12 26 16 

NO) -0. 1780 0 .  1105 0. 3 30f 0.0115 0. 0053 0.0229 0.0002 0.0048 0.00 11 NO) 
10  9 12 17 6 27 9 16 12 

N(4) 0. 0259 0. 2058 0. 36 83 0.01 16 0. 0063 0.0293 -0.0008 0.0051 0.0017 N(4) 
14 7 12 17 7 29 9 18 11 

0(3) 0. 1379 0, 249 5 c. 3706 0.0155 0. 0049 0.0441 -0.0022 0.0134 -0.0035 0(3) 
9 5 11 13 4 27 7 15 9 

n i 4 »  —0* 2758 0. 052 7 0. 3250 0.0088 0, 0069 0,0407 -0.0026 0.0067 0.0009 n i 4 »  
8 5 10 12 5 26 6 14 9 



www.manaraa.com

Table 25. Final refined positional and thermal parameters for CU(DMG)2 with ("below) 
the significant figures of the standard deviations 

X Y Z 811 822 833 812 813 823 

cu 0.02769 0.09384 0.36725 0.00681 0.00204 0.02216 -0.00044 0.00578 -0.00022 

c ( i ;  
4 2 7 5 2 13 2 6 3 

c ( i ;  0.22893 0.01497 0.23573 0. 00865 0.00308 0.01819 0.00018 0.0 05 96 0.00070 

C ( 2 )  
38 23 57 41 13 87 19 50 28 C ( 2 )  0.36153 -0.00505 0.18597 0.01164 0.00454 0.03747 0.00026 0.01267 -0.00078 

C O )  
50 29 86 56 20 155 26 79 44 

C O )  0.11433 -0,04249 0.22738 0.00868 0.00253 0.01541 0.00017 0.00460 0.00053 

C ( 4 I  
37 20 53 38 12 81 17 46 25 

C ( 4 I  0.11806 -0.12394 0.15646 0.01468 0.00270 0.02411 0.00073 0.00659 -0.00083 

N ( l >  
49 24 69 58 13 110 23 66 31 

N ( l >  0.20297 0.08337 0.29268 0. 00 8 30 0.00284 0.02294 —0.00064 0.00655 0.00006 

N I 2 )  
32 18 50 33 11 80 15 43 24 

N I 2 )  0.01280 -0.01583 0.29163 0.00761 0.00225 0.02095 -0.00027 0.00459 0.00030 

0 ( 1 )  
30 17 48 32 10 74 14 41 23 

0 ( 1 )  0.29925 0.14251 0.30670 0.01077 0.00349 0.03530 -0.00 201 0.01085 -0.00028 

0 ( 2 )  
31 17 51 34 11 93 16 47 26 0 ( 2 )  -0.09550 -0.06203 0.30670 0.00834 0.00271 0.02137 -0.00147 0.00452 -0.00051 

C ( 5 )  
26 15 59 27 9 63 13 34 20 C ( 5 )  -0.21280 0.18391 0.34700 0.00797 0.00298 0.01646 0.00070 0.00281 0.00051 

C ( 6 )  
37 22 57 38 13 82 18 46 27 C ( 6 )  -0.35621 0.20999 0.35610 0. 00921 0.00416 0.02836 0.00168 0.00539 0.00081 

C ( 7 )  
43 27 74 45 17 122 23 61 37 

C ( 7 )  -0.09554 0. 24024 0.35700 0.01004 0.00271 0.01949 0.00034 0.00419 0.00058 

C( 8 )  
41 22 60 46 13 92 19 53 28 

C( 8 )  -0.11867 0.32657 0.34294 0.01618 0.00235 0.03324 0.00124 0.00650 0.00061 

N O )  
53 24 82 65 13 140 23 79 35 

N O )  -0.17577 0.11249 0.33719 0 . 00633 0.00288 0.02267 -0.00020 0.00414 0.00011 

N < 4 )  
30 18 50 29 11 81 14 40 24 

N < 4 )  0.02666 0.20733 0.37188 0.00954 0.00234 0.02158 -0.00052 0.00&05 0.00018 

0 ( 3 )  
32 17 49 34 10 78 16 43 23 0 ( 3 )  0.14090 0.25023 0.37508 0.01126 0.00253 0.03616 -0.00131 0.00898 0.00019 

0 ( 4 )  
31 15 53 35 9 93 14 47 23 0 ( 4 )  -0.27668 0.05433 0.32649 0.00735 0.00350 0.02777 -0.00090 0.00410 0.00079 
27 17 46 28 11 77 14 33 24 
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Table 26. Final refined positional and thermal parameters for Ni(EMG)2 with (below) the 
significant figures of the standard deviations 

X Y z 811 822 833 812 813 823 

NI 0. 100000 0. 00000 0. 00000 0.04101 0.00741 0. 00532 -0. 00205 0. 00296 -0. 00034 
0 0 0 48 8 - 7 . 17 12 6 

N l l l  -0. 02701 -0« 15244 -0. 04141 0.03311 0.00794 0. 00672 -0. 00127 0. 00374 0. 00040 
76 35 32 • 200 36 29 69 65 26 

N ( 2 I  0. 26856 0. 00240 -0. 11016 0.05166 0.00790 0. 00602 -0. 00187 0. 00296 0. 00012 
89 36 30 228 35 28 89 66 30 

0 ( 1 1  -0. 20713 -0. 22715 0. 00387 0.06962 0.00723 0. 00999 -0. 00524 0. 00760 -0. 00032 
85 28 29 246 29 32 71 74 25 

0 ( 2 1  0. 41503 0. 09580 -0* 13782 0.06345 0.00947 0. 00800 -0. 00513 0. 00817 -0. 00032 
81 30 29 227 34 29 77 67 24 

C l l )  0. 13442 -0. 18584 -0, 12036 0.05236 0.00724 0. 00664 0. 00138 0. 00017 -0. 00013 
113 42 39 289 43 38 97 89 33 

C ( 2 I  0. 31007 -0. 09348 -0. 16140 0.04260 0.00790 0. 00579 0. 00249 -0. 00039 —0. 00026 
107 42 38 259 45 36 91 79 33 

C ( 3 I  0. 14082 -0. 30575 -0. 16311 0.07652 0.00762 0. 01079 0. 00162 0. 00557 -0. 00121 
133 45 47 394 47 52 117 120 40 

C ( 4 I  0. 50873 -0. 10602 -0. 25632 0.05147 0.01039 0. 00753 0. 00221 0. 00490 -0. 00044 
122 44 43 • 287 52 42 106 89 37 

C ( 5 )  0. 35938 -0. 08927 -0. 36816 0.09196 0.01585 0. 00735 0. 00561 0. 00166 -0. 00055 
154 57 48 465 77 47 158 122 46 
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Table 2?. Final refined positional and thermal parameters for Ni(DMG)2 with (below) the 
significant figures of the standard deviations 

X Y B l l  822 833 612 

NI 0.00000 0.  00000 0.00326 0 .00726 0.01563 -0 « 00010 
0 0 7 18 40 13 

N ( U  0.111.75 -0.  00746 0.00369 0 .00834 0.01845 0.  00021 
40 94 31 83 173 63 

N ( 2 )  0.01047 -0.  17787 0.00358 0 .00836 0.01701 0.  00055 
53 68 36 81 169 53 

0 ( 1 )  0.15989 0.  09416 0.00384 0 .00886 0.02964 -0.  OOLIO 
43 68 30 79 227 45 

0 ( 2 »  -0.05313 -0.  25920 0.00458 0 .00970 0.03068 -0.  C0106 
41 72 31 83 224 49 

C d )  0.14206 -0.  12243 0.00361 0 .00980 0.01457 -0.  00014 
61 99 46 134 254 63 

C ( 2 )  0.08262 -0.  22335 0.00375 0 .00831 0.01661 0.  00106 
59 94 41 112 249 63 

C ( 3 )  0.23194 —0. 14364 0.00431 0 .01335 0.02840 0.  00023 
62 102 50 145 320 70 

C ( 4 )  0.10118 -0.  36115 0.00566 0 .00829 0.03627 -0.  00004 
67 97 56 113 379 67 
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XII. APPENDIX B 

Table 28. Final observed and calculated structure 
amplitudes in electrons for CuCDMGÏz-dg 

Table 29- Final observed and calculated structure 
amplitudes in electrons for CuCdMG)2 

Table 30. Final observed and calculated structure 
amplitudes in electrons for ]!Ii(EMG)2 

Table 31. Final observed and calculated structure 
amplitudes in electrons for NiCDMG)^ 
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Table 28. Final observed and calculated structure amplitudes in 
electrons for CuCPMG)z-dz 

H tc L FO FC H K L FO FC H K L FO FC 

2 0 0 34 29 6 5 0 21 20 6 10 0 29 29 
4 0 0 31 31 7 5 0 17 21 1 11 0 37 38 
6 0 0 29 32 -2 6 0 64 61 2 11 0 14 10 
8 0 0 20 17 -1 6 0 24 25 3 11 0 31 31 
1 1 0 150 147 0 6 0 74 75 4 11 0 10 8 
2 1 0 6 6 1 6 0 20 25 5 11 0 48 47 
3 1 0 71 70 2 6 0 57 61 6 11 0 8 3 
4 I 0 38 38 3 6 0 6 7 -4 12 0 19 16 
5 1 0 39 37 4 6 0 15 17 -3 12 0 9 14 
6 1 0 19 19 5 6 0 14 12 -2 12 0 23 22 
7 1 0 15 13 6 6 0 17 17 0 12 0 33 32 
8 1 0 30 29 7 6 0 9 8 2 12 0 24 22 
0 2 0 64 60 -2 7 0 20 20 3 12 0 ri 14 
1 2 0 5 2 -1 7 0 64 62 4 12 0 13 16 
2 2 0 13 11 1 7 0 58 62 5 12 0 15 16 3 2 0 38 36 2 7 0 21 20 1 13 0 4 5 
4 2 0 52 52 3 7 0 22 21 2 13 0 5 12 
5 2 0 57 56 4 7 0 27 28 3 13 0 11 10 
6 2 0 6 2 5 7 0 10 13 4 13 0 10 12 
7 2 0 37 38 6 7 0 23 22 -2 14 0 11 9 
8 2 0 7 3 8 7 0 23 24 0 14 0 11 11 
1 3 0 2 2 -3 8 c 33 30 1 14 0 19 17 
2 3 0 4 1 -1 8 0 3 3 2 14 0 9 9 
3 3 0 12 12 0 8 0 8 9 3 14 0 7 5 
4 3 0 52 53 3 8 0 30 30 4 14 0 7 1 
5 3 0 15 11 4 8 0 13 13 -3 15 0 14 13 
6 3 0 57 57 5 8 0 46 42 1 15 0 22 20 
8 3 0 9 8 6 8 0 17 16 2 15 0 15 15 

-1 4 0 10 10 7 8 0 30 30 3 15 0 12 13 
0 4 0 21 17 -3 9 0 28 27 0 16 0 15 12 
1 4 0 10 10 1 9 0 44 42 1 16 Q 15 13 
2 4 0 24 22 2 9 0 34 35 -9 0 1 30 31 3 4 0 33 32 3 9 0 25 27 -7 0 1 25 26 
4 4 0 44 42 4 9 0 30 31 -5 0 1 7 7 
5 4 0 29 27 5 9 0 36 34 -3 0 1 20 20 6 4 0 21 22 6 9 0 29 32 -1 0 1 88 88 
7 4 0 20 18 7 9 0 6 5 1 0 1 137 141 
8 4 0 15 12 -4 10 0 42 42 3 0 1 66 66 

-2 5 0 79 81 -2 10 0 51 50 5 0 1 56 53 
-1 S 0 91 92 0 10 0 39 38 7 0 1 47 45 

1 5 0 95 92 1 10 0 23 22 -9 1 1 13 13 
2 5 0 78 81 2 10 0 47 50 -8 1 1 19 19 
3 5 0 10 9 3 10 0 31/ 37 -7 1 1 33 32 4 5 0 33 30 4 10 0 45 42 —6 1 1 27 26 
5 5 0 10 10 5 10 0 5 4 -5 1 1 50 46 
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Table 28. CContinued). 

H K L PO FC H K L FO FC H K I FO FC 

-4 1 1 29 27 -8 4 1 7 3 -8 7 1 11 11 
-3 1 1 56 51 -7 4 1 15 14. -7 7 1 23 25 
-2 1 1 14 12 -6 4 1 44 42 -6 7 1 25 23 
-1 1 I 67 60 -5 4 1 3 3 -5 7 I 42 38 
0 1 1 87 86 -3 4 1 30 30 -4 7 1 29 27 
I 1 1 67 65 -2 4 1 11 7 -3 7 1 36 37 
2 1 1 53 52 -1 4 1 12 11 -2 7 I 6 6 
3 1 1 8 5 0 4 1 17 12 -1 7 1 90 89 
4 1 1 67 64 1 4 1 10 7 0 7 1 65 63 
5 1 1 5 7 2 4 1 9 12 1 7 1 39 39 
6 1 1 48 47 3 4 1 39 39 2 7 1 38 41 
7 1 1 6 7 4 4 1 29 29 3 7 I 12 10 
8 1 I IS 15 5 4 1 44 45 4 7 1 3 3 -9 2 X 12 13 6 4 1 11 10 5 7 1 7 2 

-8 2 I 15 13 7 4 I 12 12 6 7 1 23 26 
-7 2 1 4 4 -8 5 1 14 16 7 7 1 4 2 
-6 2 1 62 57 -7 5 1 9 10 -8 8 1 25 26 -S 2 1 3 3 -6 5 1 12 10 -7 8 1 17 17 
-4 2 1 139 136 -5 5 1 8 9 -6 8 1 60 55 
-3 2 1 8 5 -4 5 1 7 4 -4 8 1 38 31 
-2 2 1 29 26 -3 5 1 18 16 -3 8 1 12 11 -1 2 1 35 39 -2 5 1 26 26 -2 8 1 87 79 
0 2 I 115 108 -1 5 1 8 8 -1 8 1 47 39 
1 2 1 51 50 0 5 1 43 40 0 8 1 86 83 
2 2 1 47 48 1 5 1 4 4 1 8 I 38 37 
3 2 I 40 40 2 5 1 36 35 2 8 1 46 45 
4 2 1 35 35 3 5 1 16 15 3 8 1 6 4 
5 2 1 13 13 4 5 1 39 42 5 8 1 4 3 6 2 1 12 10 5 5 1 10 10 6 8 1 4 2 7 2 1 8 13 6 5 1 35 32 -3 9 1 49 44 
8 2 1 19 20 7 5 1 4 3 c 9 1 26 25 -8 3 1 18 18 -8 6 1 6 1 1 9 1 50 48 -7 3 1 34 35 -7 6 1 20 18 2 9 1 25 25 

-6 3 1 40 41 -6 6 1 15 19 3 9 1 11 13 — 5 3 1 84 83 -4 6 I 11 11 4 9 1 21 27 -4 3 I 31 30 -3 6 1 11 11 5 9 1 9 7 
-2 3 1 28 31 -2 6 1 24 23 6 9 1 23 23 -1 3 1 24 22 -1 6 I 59 53 0 10 1 7 11 
0 3 1 33 32 0 6 1 21 17 1 10 1 28 32 1 3 1 4 9 1 6 I 51 48 2 10 1 5 3 2 3 1 19 19 2 6 1 34 35 3 10 1 39 41 
3 3 1 9 11 3 6 1 42 38 4 10 1 6 6 4 3 1 44 39 4 6 1 17 16 5 10 I 46 49 5 . 3 1 22 20 5 6 1 24 25 0 11 1 24 26 6 3 I 11 10 6 6 1 5 11 1 11 1 5 8 
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Table 28. (Continued) 

H K L FO FC H K L FO FC M K L FO FC 

2 11 1 35 36 2 2 2 3 4 3 5 2 23 23 
3 11 1 4 4 3 2 2 47 47 4 5 2 9 7 
4 11 1 34 33 4 2 2 7 2 5 5 2 29 29 

—4 12 1 22 24 5 2 2 41 41 6 5 2 10 9 
0 12 1 21 21 6 2 2 20 20 7 5 2 16 14 
1 12 1 37 37 7 2 2 16 14 -8 6 2 21 19 
2 12 1 15 14 -8 3 2 10 4 -7 6 2 9 8 
5 12 1 12 13 -7 3 2 8 8 -6 6 2 36 42 
1 13 1 33 36 —6 3 2 16 15 -4 6 2 6 5 
0 14 1 26 26 -5 3 2 8 7 -2 6 2 35 35 
0 15 1 16 13 -4 3 2 75 75 -1 6 2 22 22 

-8 0 2 64 61 -2 3 2 25 25 1 6 2 44 39 
-6 0 2 40 49 -1 3 2 6 5 2 6 2 21 17 
-4 0 2 47 47 0 3 2 58 58 4 6 2 16 13 
-2 0 2 20 22 1 3 2 28 29 5 6 2 8 6 

0 0 2 174 180 2 3 2 32 33 6 6 2 32 29 
2 0 2 27 26 4 3 2 59 58 — 8 7 2 4 1 
4 0 2 26 2i 5 3 2 12 14 -7 7 2 16 19 
6 0 2 35 34 6 3 2 25 30 —6 7 2 28 28 

-9 1 2 28 30 -8 4 2 4 3 -5 7 2 20 18 
-8 1 2 7 8 -7 4 2 19 19 -4 7 2 7 8 
-7 1 2 53 51 -6 4 2 40 42 -3 7 2 8 3 
-6 1 2 30 28 -5 4 2 10 9 -2 7 2 45 49 
-5 1 2 61 55 -3 4 2 19 20 -1 7 2 7 7 
-4 2 4 4 -2 4 2 53 52 1 7 2 12 14 
-3 1 2 33 32 -1 .4 2 38 39 2 7 2 48 49 
-2 1 2 36 36 0 4 2 9 8 3 7 2 20 19 
-1 1 2 12 11 1 4 2 39 40 4 7 2 17 16 
0 1 2 180 187 2 4 2 16 16 5 7 2 18 17 
1 1 2 75 76 3 4 2 26 26 6 7 2 18 18 
2 2 12 14 4 4 2 38 36 -7 S 2 9 7 
3 î 2 17 17 5 4 2 18 16 -5 8 2 42 38 
4 1 2 15 18 6 4 2 16 15 -4 8 2 12 11 S 1 2 26 27 7 4 2 14 14 -3 8 2 39 34 
6 1 2 18 18 -8 5 2 16 18 -2 8 2 6 1 
7 1 2 25 28 -7 5 2 34 35 -1 8 2 83 75 

-8 2 2 11 S -6 5 2 8 8 1 a 2 65 67 
-7 2 2 14 14 -5 5 2 22 26 2 8 2 6 5 
-6 2 2 32 30 -4 5 2 28 27 3 8 2 41 43 
-5 2 2 39 37 -3 5 2 4 4 4 8 2 5 1 -4 2 2 22 22 -2 5 2 15 22 5 8 2 32 32 
-3 2 2 67 68 -1 5 2 31 36 6 B 2 13 12 -1 2 2 70 72 0 5 2 15 15 —6 9 2 14 11 
0 2 2 65 67 1 5 2 8 7 -3 9 2 7 10 1 2 2 31 84 2 5 2 23 24 2 9 2 51 48 
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Table 28. CContinued) 

H K L FO FC H K L FO FC H K L FO FC 

3 9 2 4 3 -2 1 3 37 37 -1 4 3 13 13 4 9 2 31 38 -1 1 3 47 <f7 0 4 3 21 22 5 9 2 11 9 0 1 3 93 94 1 4 3 7 5 6 9 2 19 18 1 1 3 35 35 2 4 3 47 48 —6 10 2 39 35 2 1 3 18 17 3 4 3 7 8 —5 10 2 26 26 3 1 3 29 28 4 4 3 12 11 -4 10 2 38 44 4 1 3 22 19 6 4 3 19 20 -2 10 2 24 26 5 1 3 21 18 -8 5 3 11 11 0 10 2 6 1 -9 2 3 8 5 -7 5 3 12 7 1 10 2 9 14 -8 2 3 14 II -6 5 3 42 41 2 10 2 11 11 -7 2 3 18 19 -5 5 3 7 8 3 10 2 23 25 -6 2 3 7 6 -4 5 3 44 44 
4 10 2 21 20 -5 2 3 18 21 -3 5 3 19 18 5 10 2 7 14 -4 2 3 39 42 -2 5 3 32 34 1 11 2 10 7 -3 2 3 30 30 -1 5 3 22 25 
3 11 2 19 24 -2 2 3 18 18 0 5 3 47 49 4 11 2 4 3 -1 2 3 3 3 1 5 3 25 25 —6 12 2 17 16 0 2 3 34 33 2 5 3 12 11 -4 12 2 18 17 1 2 3 28 28 3 5 3 22 16 -3 12 2 18 13 2 2 3 68 69 4 5 3 5 3 -2 12 2 15 16 3 2 3 13 12 5 5 3 7 S 0 12 2 4 4 4 2 3 43 42 -7 6 3 17 18 
1 12 2 22 23 5 2 3 10 2 -5 6 3 39 36 2 12 2 12 12 6 2 3 17 17 -4 6 3 4 4 3 12 2 9 13 -9 3 3 17 13 -3 6 3 41 43 
4 12 2 4 3 -8 3 3 6 4 -2 6 3 12 12 0 13 2 20 31 -7 3 3 9 15 -1 6 3 64 68 -2 14 2 4 3 -6 3 3 32 32 0 6 3 14 15 0 14 2 6 2 -5 3 3 19 20 1 6 3 32 27 0 15 2 4 4 —4 3 3 8 8 2 6 3 12 9 
-9 0 3 II 21 —3 3 5 XX 9 3 6 3 4 6 -7 0 3 50 51 -1 3 3 14 14 4 6 3 24 24 -5 0 3 46 50 0 3 3 28 28 5 6 3 <3 4 -3 0 3 83 83 1 3 3 42 44 -8 7 3 21 22 -1 0 3 84 85 2 3 3 19 20 -7 7 3 7 6 1 0 3 113 113 3 3 3 60 60 —6 7 3 17 11 3 0 3 8 11 4 3 3 5 6 -5 7 3 14 13 
5 0 3 6 7 5 3 3 21 25 -4 7 3 30 26 -9 1 3 12 12 -8 4 3 10 8 -3 7 3 10 8 -8 1 3 18 15 -7 4 3 12 9 -2 7 3 20 23 —7 1 3 16 15 -6 4 3 33 34 -1 7 3 4 4 -6 l 3 34 34 -5 4 3 55 51 0 7 3 58 56 -5 1 3 14 12 -4 4 3 8 7 1 7 3 32 35 -4 1 3 98 96 -3 4 3 47 47 2 7 3 11 13 -3 1 3 6 6 -2 4 3 15 14 3 7 3 14 17 
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Table 28. CContinued) 

H K L FO FC H K I FO FC 

4 7 3 8 6 -4 1 4 23 21 
5 7 3 19 20 -3 1 4 49 48 

-7 8 3 12 11 -1 1 4 57 56 
-6 3 3 29 26 0 1 4 40 40 
-5 8 3 9 8 1 1 4 13 13 
-4 8 3 7 11 2 1 4 18 12 

3 8 3 6 2 3 1 4 26 25 
-2 8 3 9 9 4 1 4 12 9 
-1 8 3 5 1 5 1 4 17 17 
0 8 3 26 27 -8 2 4 9 9 
2 8 3 25 27 -7 2 4 37 39 
4 8 3 29 28 -6 2 4 6 8 
5 8 3 10 6 -5 2 4 47 47 

-6 9 3 28 27 —4 2 4 28 30 
-3 9 3 11 15 -3 2 4 42 41 
0 9 3 10 19 -2 2 4 11 10 
2 9 3 19 19 0 2 4 26 26 
3 9 3 34 31 1 2 4 16 17 
4 9 3 7 4 2 2 4 12 13 
5 9 3 25 25 3 2 4 22 19 

-5 10 3 61 51 4 2 4 11 10 
0 10 3 4 5 -8 3 4 16 18 
I 10 3 19 28 -6 3 4 49 49 
2 10 3 8 15 -5 3 4 16 19 
3 10 3 6 9 -4 3 4 59 59 
4 10 3 11 9 -3 3 4 10 10 
0 11 3 23 24 -2 3 4 7 8 
2 11 3 17 17 -1 3 4 12 13 
3 11 3 14 13 0 3 4 20 19 

-3 12 3 8 13 1 3 4 29 29 
0 12 3 7 10 2 4 14 15 
I 12 3 20 27 3 3 4 4 3 
2 12 3 12 11 4 3 4 13 11 
3 12 3 7 6 5 3 4 11 11 

-8 0 4 8 7 -7 4 4 26 27 
-6 0 4 11 14 -6 4 4 11 7 
-4 0 4 16 17 -5 4 4 25 23 
-2 0 4 72 76 -4 4 4 13 19 
0 0 4 73 76 -3 4 4 23 19 
2 0 4 28 27 -2 4 4 44 45 
4 0 4 20 18 -1 4 4 8 13 

-a 1 4 24 28 0 4 4 29 31 
-7 1 4 8 9 1 4 4 3 3 
-6 1 4 25 26 2 4 4 13 13 
-5 1 4 13 13 3 4 4 14 13 

h K L FO FC 

4 4 4 26 25 
5 4 4 4 5 

-8 5 4 16 13 
-7 5 4 13 13 
-6 5 4 7 2 
-5 5 4 14 15 
-4 5 4 8 11 
-3 5 4 38, 39 
-2 5 4 14 12 
-1 5 4 35 35 
0 5 4 5 7 
1 5 4 45 46 
2 5 4 13 13 
3 5 4 16 17 
5 5 4 16 15 

-8 6 4 17 11 
-7 6 4 10 14 

6 4 4 1 
-5 6 4 12 12 
-4 6 4 38 39 
-3 6 4 6 7 
-2 6 4 10 37 
-1 6 4 16 17 
0 6 4 41 46 
1 6 4 10 10 
2 6 4 15 29 
3 6 4 5 1 
4 6 4 6 9 

-7 7 4 10 3 
-6 7 4 35 34 
-5 7 4 19 17 
-4 7 4 17 20 
-3 7 4 33 35 
-2 7 4 16 17 
-I 7 4 28 ?9 
0 7 4 15 14 
1 7 4 17 19 
2 7 4 5 7 
3 7 4 17 18 
4 7 4 6 7 

-7 8 4 29 27 
—6 8 4 9 14 
-5 a 4 59 54 
-4 8 4 34 31 
-3 8 4 12 12 
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Table 28. (Continued) 

M K L FO FC M K L FO FC H K L FO FC 

-2 a 4 7 1 -5 2 5 4 4 1 6 5 21 19 
-1 8 4 20 16 -4 2 5 40 "il -6 7 5 m 6 
0 8 4 10 5 -3 2 5 10 7 -5 7 5 14 17 
1 8 4 10 11 -2 2 5 25 27 -4 7 5 9 7 
2 8 4 a 1 -1 2 5 5 6 -3 7 5 30 31 

-6 9 4 28 29 0 2 5 40 38 -2 7 5 12 13 
-3 9 4 12 12 1 2 5 6 7 -1 7 5 20 23 

1 9 4 21 21 2 2 5 16 16 0 7 5 4 4 
3 9 4 9 9 3 2 5 7 9 1 7 5 17 16 

-6 10 4 15 14 4 2 5 14 13 2 7 5 15 12 
-5 10 4 23 23 -7 3 5 27 30 -6 8 5 21 19 
-4 10 4 6 12 -6 3 5 6 7 -4 8 5 32 33 
-2 10 4 12 19 3 5 39 39 -3 8 5 8 11 

0 10 4 30 29 -4 3 5 4 4 -2 8 5 32 30 
1 10 4 8 4 -3 3 5 31 32 -1 8 5 4 8 
2 10 4 33 28 -1 3 5 16 17 0 8 5 29 28 
0 11 4 4 4 1 3 5 23 22 1 8 5 8 8 
I 11 4 15 25 2 3 5 16 17 2 8 5 8 14 
2 11 4 6 3 3 3 5 17 18 -3 9 5 28 29 

-4 12 4 6 5 -6 4 5 14 11 0 9 5 14 9 
-3 12 4 13 8 -5 4 5 15 12 1 9 5 14 14 
-2 12 4 • 6 11 -4 4 5 20 21 0 10 5 6 5 

0 12 4 15 16 -3 4 5 7 5 -6 0 6 21 25 
1 12 4 6 5 -2 4 5 14 14 -4 0 6 22 22 

-7 0 5 33 31 -1 4 5 10 6 -2 0 6 18 18 
-5 0 5 11 11 0 4 5 18 17 0 0 6 31 28 
-3 0 5 15 11 1 4 5 17 15 2 0 6 12 3 
-1 0 5 32 28 2 4 5 20 20 -5 1 6 21 21 
1 0 5 8 5 3 4 5 20 22 -3 1 6 29 27 
3 Q 5 24 22 -7 5 5 16 16 -2 I 6 26 25 

-8 1 5 11 12 —6 5 5 18 15 -1 1 6 15 15 
-7 I 5 16 18 -2 5 5 13 16 0 1 6 22 22 
-6 1 5 13 16 -1 5 5 15 15 —6 2 6 11 S 
-5 1 5 19 19 0 5 5 a 1 -5 2 6 9 9 
-4 1 S 28 27 1 5 5 10 10 -4 2 6 17 17 
-3 1 5 23 20 2 5 5 22 23 -3 2 6 17 14 
-2 5 13 13 3 5 5 8 7 -2 2 6 9 8 
-1 1 5 31 32 -7 6 5 7 1 -1 2 6 33 31 

1 1 5 27 26 —6 6 5 6 14 1 2 6 17 15 
2 1 5 15 13 -5 6 5 14 14 —6 3 6 7 1 
3 L 5 10 7 -4 6 5 9 11 -5 3 6 11 12 
4 1 5 13 14 r3 6 5 9 B -4 3 6 12 10 -8 2 5 21 20 -2 6 5 18 15 -2 3 6 25 24 

-7 2 5 13 15 -1 6 5 8 9 -1 3 6 4 2 
-6 2 5 39 40 0 6 5 7 3 C 3 6 13 12 
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Table 28. (Continued] 

H K L FO FC H K L FO FC H K L FO FC 

1 3 6 6 11 • -4 5 6 9 5 -2 6 6 14 14 
—6 4 6 16 21 -3 5 6 17 15 -1 6 6 7 3 
-4 4 6 13 18 -1 5 6 15 12 0 6 6 8 8 
-3 4 6 11 9 0 5 6 8 8 -4 7 6 4 i 
-2 4 6 8 5 1 5 6 10 9 -3 7 6 18 16 
-1 4 6 13 12 -5 6 6 5 4 -2 7 6 20 19 
0 4 6 8 11 -4 6 6 27 26 -1 7 6 4 4 

-5 S 6 18 18 -3 6 6 11 9 -3 8 6 21 22 
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Table 29. Final dbserved and calculated structure amplitudes in 
.. electrons for CuCDMGÎ2 

H K L FO FC H K I FO FC H K L FO FC 

12 0 0 13 14 -4 2 0 60 55 -8 4 0 18 18 
10 0 0 Q 8 -3 2 0 46 44 -7 4 0 27 26 
-8 0 0 21 21 -2 2 0 18 16 —6 4 0 24 24 
-6 0 0 37 37 -1 2 0 6 6 -5 4 0 32 32 
—4 0 0 34 36 0 2 0 64 62 —4 4 0 51 48 
-2 0 0 36 35 1 2 0 6 6 -3 4 0 36 36 

2 0 0 36 35 2 2 0 18 16 -2 4 0 28 27 
4 0 0 33 36 3 2 0 44 44 -1 4 0 10 10 
6 0 0 36 37 u 2 0 56 55 0 4 0 25 23 « 0 c 21 21 5 2 0 65 66 1 4 0 11 10 

IC 0 0 8 8 6 2 0 0 2 2 4 0 27 27 
12 0 c 13 14 7 2 0 46 47 3 4 0 36 36 
12 1 0 0 4 4 2 3 7 7 4 4 0 68 48 
11 1 0 0 2 9 2 0 24 25 5 4 c 30 3? 
10 1 0 20 2C ID 2 0 6 4 5 4 0 22 26 • Q 1 0 9 8 11 2 0 21 2? 7 6. 0 26 26 -q 1 0 38 38 12 2 n 3 2 3 t. r in 18 -7 1 0 14 14 -12 3 Ô 14 13 9 4 0 12 1 3 
—h Î 0 25 24 -11 3 0 0 3 10 4 0 4 4 
-5 1 r 43 41 -IP 3 0 26 26 11 4 0 13 12 —4 1 n 43 40 •«•9 3 3 6 7 12 4 0 5 6 
-3 1 0 S3 78 -8 3 0 10 9 -12 5 0 r 2 
-? 1 c 8 7 -7 3 0 4 2 -11 5 0 6 5 
-1 1 0 152 154 -6 3 D 70 73 -10 5 0 11 10 0 1 0 C 0 -5 3 0 16 15 -9 5 0 8 o 
1 I 0 147 154 -4 3 0 64 61 -8 5 r 5 3 
2 1 0 P 7 -3 •a 0 15 14 -7 5 c- 24 25 3 1 0 79 78 -2 3 0 3 3 -6 5 0 25 25 4 1 0 42 40 -1 3 0 2 2 -5 5 0 14 14 
5 1 0 42 41 0 3 0 2 0 —4 5 0 40 35 
6 1 0 24 24 1 3 0 2 2 -3 5 0 0 11 t 1 0 14 14 2 3 0 3 3 -2 5 0 06 88 S i 0 37 38 •a 3 0 14 14 -1 5 0 106 1 03 
9 1 0 o 8 4 ? c 60 61 0 5 0 0 0 10 1 0 19 20 S 3 m 15 15 1 5 0 136 1?3 

11 1 0 4 2 6 •a 0 68 70 2 o = 88 
12 1 c 5 4 7 ? 0. 1 2 3 5 r A 11 
12 2 0 0 2 8 3 0 10 9 4 5 c 30 35 11 2 ? 23 22 9 3 c 7 7 5 5 c 12 14 
10 2 0 5 4 10 3 n 24 25 5 5 c 24 25 -9 2 0 25 25 12 3 0 11 13 7 5 0 24 25 -9 2 0 e 7 -12 4 0 5 6 8 5 c 3 3 -7 2 r 47 47 -11 6, 0 12 12 9 5 c 7 9 -6 2 0 ** 2 -10 4 0 5 4 10 5 n 9 10 -5 2 C 69 66 -9 4 0 13 13 11 5 0 6 5 
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Table 29. (Continued} 

H K L FO FC H K L FO FC H K L FO FC 

-2 19 0 11 11 11 0 1 17 18 8 2 1 29 30 
-1 19 0 6 4 -12 1 1 13 13 9 2 1 7 7 

0 19 0 5 0 -11 1 1 8 8 13 2 1 18 19 
1 19 0 4 4 -10 1 1 33 34 11 2 1 8 8 
2 19 c 9 11 -9 1 1 17 18 -12 3 1 5 4 
3 19 0 10 9 -8 1 1 22 23 -11 3 1 10 11 
4 19 0 13 12 -7 1 1 36 37 -10 3 1 4 2 
5 19 0 1 2 -6 1 1 32 30 -9 3 1 3 3 
6 19 0 13 13 -5 1 1 55 53 -8 3 1 24 24 

-5 20 0 7 5 -4 1 1 31 28 -7 3 1 39 39 
-4 20 0 11 10 -3 1 1 59 55 -6 3 1 46 45 
-3 20 0 2 2 -2 1 1 16 14 -5 3 1 100 98 
-2 20 0 13 14 -1 1 1 66 64 —4 3 1 38 33 
-1 20 0 6 3 0 1 1 89 92 -3 3 1 110 105 

0 20 0 19 19 1 1 1 68 68 -2 3 1 32 28 
I 20 0 3 3 2 1 Î 59 58 -1 3 1 28 28 
2 20 0 13 14 3 1 1 7 6 0 3 1 37 34 
3 20 0 0 2 4 1 1 77 77 1 3 1 7 5 
4 20 0 9 10 5 1 1 6 4 2 3 1 20 19 
5 2C 0 4 5 6 1 1 57 57 3 3 1 IC 10 

-4 21 0 0 2 7 1 1 12 11 4 3 1 48 47 
-3 21 0 12 14 8 1 1 15 16 5 •a 1 22 20 
-2 21 0 5 7 9 1 1 15 16 6 3 1 11 12 
-1 21 0 15 17 10 1 1 27 28 7 3 1 6 6 

0 21 0 1 C 11 1 1 11 9 8 i 1 13 13 
1 21 0 18 17 -12 2 1 0 0 9 3 1 24 26 
2 21 0 7 7 -11 2 1 10 10 10 3 1 0 1 
3 21 0 12 14 -10 2 1 24 23 11 3 1 14 16 
4 21 0 2 2 -9 2 1 18 19 -12 4 1 0 1 

-2 22 0 7 10 -8 2 1 13 14 -11 4 1 18 16 
-1 22 0 C 0 -7 2 1 4 2 -10 4 1 8 7 
0 22 0 11 12 —6 2 1 70 68 -9 4 1 8 8 
1 22 0 4 0 -5 2 1 4 3 -8 4 1 3 3 
2 22 0 9 10 -4 2 1 157 150 -7 4 1 18 19 

11 0 1 27 28 -3 2 1 10 7 -6 4 1 50 5C 
-9 0 1 42 42 -2 2 1 33 33 -5 4 1 5 5 -7 0 1 33 33 -1 2 1 38 36 —4 4 1 72 66 
-5 0 1 9 9 C 2 1 116 117 -3 4 1 33 31 
-3 0 1 26 23 1 2 1 52 51 -2 4 i 13 14 
-1 0 1 94 93 2 2 1 53 50 -1 4 1 14 14 
1 0 1 150 152 3 2 1 50 43 0 4 1 18 18 
3 0 1 74 72 4 2 1 36 35 1 4 1 13 14 
5 0 1 63 63 5 2 1 18 17 2 4 1 14 13 7 c 1 55 56 6 2 1 12 12 3 4 1 44 45 
9 0 1 31 32 7 2 1 14 15 4 4 1 34 33 
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Table 29. CContinued) 

H K L FO FC H K L FO FC H K L FO FC 

5 4 1 52 54 2 6 1 43 41 0 8 1 101 97 
6 4 1 14 15 3 6 1 48 48 1 8 1 5C 48 
7 4 1 18 18 4 6 1 23 21 2 8 1 56 55 
8 4 1 5 6 5 6 1 32 34 3 8 1 7 7 
9 4 1 6 2 6 6 1 10 10 4 8 1 4 4 

10 4 1 17 16 7 6 1 34 35 5 8 1 0 1 
11 4 1 8 8 8 6 1 7 6 6 8 1 4 2 
12 c 1 13 13 9 6 1 15 16 7 8 1 4 3 
11 5 1 3 1 10 6 l 0 l 8 8 l 15 15 
10 5 1 23 23 11 6 1 9 10 9 8 1 1 3 
-9 5 1 0 0 -12 7 1 8 8 10 8 1 13 14 
-8 5 1 20 19 -11 7 1 14 14 11 8 1 0 3 
-7 5 1 9 10 -10 7 1 17 17 -11 9 1 9 8 
-6 5 1 16 15 -9 7 1 26 26 -10 9 1 15 14 
-5 5 1 13 13 -8 7 1 16 16 -9 9 1 19 20 
-4 5 1 4 4 -7 7 1 34 35 -8 o 1 12 12 
-3 5 1 19 19 -6 7 1 29 33 -7 9 1 26 26 
-2 5 1 31 29 -5 7 1 48 47 -6 9 l 2 1 
-1 5 1 6 6 -4 7 i 35 32 -5 9 1 87 86 
0 5 1 se 49 -3 7 1 44 44 —4 9 1 13 13 
1 5 1 5 5 -2 7 l 9 8 -3 9 1 57 57 
2 5 1 42 43 -1 7 1 112 107 -2 9 1 36 34 
3 5 1 18 18 0 7 l 75 70 -l 9 1 51 50 
4 5 1 45 47 1 7 1 53 51 0 9 1 32 31 
5 5 1 15 16 2 7 1 50 50 l 9 1 63 61 
6 5 1 42 44 3 7 1 10 10 2 9 1 34 35 
7 5 1 4 4 4 7 1 5 3 3 9 1 14 14 S 5 1 14 14 5 7 1 4 2 4 9 1 37 38 9 5 1 11 11 6 7 1 33 34 5 9 1 8 7 

10 5 1 13 14 7 '7 1 5 4 6 9 1 35 35 
11 5 1 3 4 8 7 1 20 21 7 9 l 15 17 
12 6 1 4 5 9 7 1 13 15 8 9 l 13 13 
11 6 1 17 18 10 7 i 9 8 9 9 1 7 6 10 6 l 15 14 II 7 1 10 9 10 9 1 9 8 -9 6 1 26 26 -11 8 1 4 4 -Il 10 1 17 17 -8 6 1 4 4 -10 8 1 18 19 -10 10 1 4 4 -7 6 1 25 25 -9 8 1 8 6 -9 10 1 18 18 —6 6 1 24 24 -8 8 1 38 38 -8 10 1 9 10 -5 6 1 0 1 -7 8 1 21 21 -7 10 1 16 16 —4 6 1 11 13 —6 8 1 73 71 —6 IC 1 20 20 -3 6 1 12 11 -5 8 1 3 4 -5 10 1 7 7 
-2 6 1 28 27 -4 m 1 43 45 -4 10 l 32 31 -1 6 1 72 67 -3 8 1 11 12 -3 10 1 15 15 0 6 1 24 23 -2 8 1 98 96 -2 10 1 31 31 1 6 1 57 57 -1 8 1 50 47 -1 10 1 33 32 
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Table 29. (Continued) 

H K L FO FC H K 

0 10 1 13 13 2 12 
I 10 1 47 47 3 12 
2 10 1 4 4 4 12 
3 10 1 54 55 5 12 
4 10 1 12 12 6 12 
5 10 1 70 72 7 12 
6 10 1 3 2 8 12 
7 10 1 16 17 9 12 
8 10 1 3 1 -10 13 
9 10 1 15 16 -9 13 

10 10 1 5 2 -8 13 
-11 11 1 4 6 -7 13 
-10 11 1 13 14 -6 13 
-9 11 1 4 4 -5 13 
-9 11 1 17 17 -4 13 
-7 11 1 9 10 -3 13 
-6 11 1 19 18 -2 13 
-5 11 1 30 30 -1 13 
-4 11 1 5 6 0 13 
-3 11 1 12 12 1 13 
-2 11 1 21 22 2 13 
-1 11 1 3 3 3 13 
0 11 1 32 33 4 13 
1 11 1 10 10 5 13 
2 11 1 49 50 6 13 
3 11 1 2 1 7 13 
4 11 1 46 46 e 13 
5 11 1 4 2 9 13 
6 11 1 35 37 -10 14 
7 11 1 11 10 -9 14 
8 11 1 16 17 -8 14 
9 11 1 2 3 -7 14 

10 11 1 8 8 -6 14 
-10 12 1 7 8 -5 14 
-9 12 1 14 12 —4 14 
-8 12 1 16 14 -3 14 
-7 12 1 17 15 -2 14 
-6 12 1 13 14 -1 14 
-5 12 1 7 8 C 14 
-4 12 1 31 30 1 14 
-3 12 1 8 8 2 14 
-2 12 1 28 29 3 14 
-1 12 1 20 19 4 14 

0 12 1 27 26 5 14 
1 12 1 50 50 6 14 

FO FC H K L FO FC 

17 17 7 14 1 3 4 
2 3 8 14 1 10 11 
4 5 9 14 1 7 7 

14 15 -9 15 1 7 7 
5 5 -8 15 1 10 8 

23 23 -7 15 1 9 8 
10 11 -6 15 1 1 2 
13 13 -5 15 1 18 19 
0 2 -4 15 1 3 1 

25 24 -3 15 1 15 14 
6 7 -2 15 1 6 6 

18 18- -1 15 1 20 19 
18 19 0 15 1 18 17 
25 25 1 15 1 7 5 
8 9 2 15 1 30 30 
6 4 3 15 1 9 10 

15 15 4 15 1 23 24 
55 55 5 15 1 12 11 

7 6 6 15 1 16 16 
44 45 7 15 1 13 13 

3 1 8 15 1 9 10 
15 15 -9 16 1 8 6 
7 7 -8 16 1 0 1 
3 1 -7 16 1 10 lî 

12 12 -6 16 1 4 2 
16 17 -5 16 1 10 10 

6 5 -4 16 1 0 3 
8 7 -3 16 1 15 16 
7 6 -2 16 1 4 4 
8 8 -1 16 1 10 9 

18 18 0 16 1 7 7 
4 4 1 16 1 32 30 

19 19 2 16 1 8 8 
4 6 3 16 1 32 32 

20 19 4 16 1 8 7 
21 20 5 16 1 33 33 
26 25 6 16 1 5 6 
23 23 7 16 1 16 15 
31 31 8 16 1 2 1 

5 6 -8 17 1 11 9 
18 18 -7 17 1 14 13 
10 11 -6 17 1 2 4 
3 2 -5 17 1 20 20 
9 8 -4 17 1 2 3 

16 17 -3 17 1 23 24 



www.manaraa.com

132 

Table 29. CContinued.) 

H K L FO FC H K L FO FC H K L FO FC 

-2 17 1 6 5 3 20 1 15 15 11 1 2 9 9 
-1 17 1 10 11 4 20 1 4 2 -11 2 2 11 11 

C 17 1 19 20 5 20 1 9 8 -10 2 2 18 18 
1 17 1 17 17 -3 21 1 3 3 -P 2 2 0 1 
2 17 1 33 32 -2 21 1 9 9 -8 2 2 10 11 
3 17 1 16 16 -1 21 1 0 3 -7 2 2 16 15 
4 17 1 22 22 0 21 1 14 14 —6 2 2 36 35 
5 17 1 0 1 1 21 1 2 3 -5 2 2 46 45 
6 17 1 18 18 2 21 1 11 ib -4 2 2 23 22 
7 17 1 1 1 3 21 1 4 3 -3 2 2 79 75 

-7 18 1 6 7 0 22 1 11 7 -2 2 2 3 1 
—6 18 1 25 25 1 22 1 9 13 -1 2 2 72 78 
-5 18 1 5 0 2 22 1 0 3 0 2 2 73 73 

18 1 22 24 -10 0 2 58 59 1 2 2 95 96 
-3 18 1 3 2 -8 0 2 81 82 2 2 2 •5 4 
-2 18 1 32 33 —6 C 2 56 58 3 2 2 55 55 
-1 18 1 7 7 -4 0 2 57 57 4 2 2 4 1 

G 18 1 25 25 -2 0 2 25 22 5 2 2 47 47 
1 18 1 22 22 C 0 2 178 178 6 2 2 28 28 
2 18 1 19 18 2 0 2 34 33 7 2 2 15 16 
3 18 1 5 7 4 0 2 31 30 S 2 2 9 8 4 18 1 0 3 6 0 2 45 44 9 2 2 3 5 
5 18 1 8 7 8 c 2 38 38 10 2 2 5 5 
6 18 1 0 1 10 0 2 17 17 11 2 2 0 1 

-6 19 1 2 0 -11 1 2 27 2fl -11 3 2 7 5 
-5 19 1 16 18 -10 1 2 2 3 -10 3 2 5 7 
-4 19 1 0 0 —9 1 2 42 43 -9 3 2 0 1 
-3 19 1 26 27 -8 1 2 7 7 -8 3 2 5 5 
-2 19 1 4 4 -7 1 2 61 60 -7 3 2 10 9 
-1 19 1 29 29 —6 i 2 33 31 -6 3 2 18 18 
0 19 1 4 5 -5 1 2 67 63 -5 3 2 10 11 
1 19 1 14 15 -4 1 2 0 2 -4 3 2 89 85 
2 19 1 5 5 —3 1 2 36 35 -3 3 2 7 7 
3 19 1 12 12 -2 1 2 38 3.8 -2 3 2 27 28 
4 19 1 6 5 -1 1 2 12 12 -1 3 2 7 5 
5 19 1 4 C 0 1 2 178 199 0 3 2 64 66 
6 19 1 7 6 1 1 2 77 75 1 3 2 37 36 

-5 20 1 1 0 2 1 2 12 13 2 3 2 42 43 
-4 20 1 12 12 3 1 2 20 20 3 3 2 11 11 
-3 20 1 7 1 4 1 2 20 20 4 3 2 65 65 
-2 20 1 12 13 5 1 2 35 36 5 3 2 16 16 
-1 20 1 7 9 6 1 2 23 23 6 3 2 33 34 

C 20 1 15 15 7 1 2 37 36 7 3 2 4 3 
1 2C 1 15 15 8 1 2 7 7 8 3 2 7 8 
2 20 1 10 11 , 9 1 2 14 14 9 ? 2 11 12 
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Table 29. CContin^ied} 

H K L FO FC H K L FO FC H K L FO FC 

IC 3 2 2 1 9 5 2 23 24 -10 8 2 0 0 
11 3 2 7 4 10 5 2 4 4 -9 8 2 4 0 

-11 4 2 4 6 -11 6 2 9 8 — 8 8 2 2 4 
-10 4 2 19 20 -10 6 2 36 37 -7 8 2 8 7 
-9 4 2 1 4 -9 6 2 4 0 —6 8 2 3 4 
-8 4 2 5 4 -8 6 2 25 25 -5 8 2 49 48 
-7 4 2 21 22 -7 6 2 11 10 -4 8 2 15 14 
—6 4 2 51 50 —6 6 2 53 5» -3 8 2 44 1-5 
-5 4 2 12 12 -5 6 2 4 3 -2 8 2 4 4 
—4 4 2 63 59 —4 6 2 4 5 -1 8 2 92 91 
-3 4 2 22 22 -3 6 2 0 3 0 8 2 1 1 
-2 4 2 60 55 -2 6 2 41 42 1 8 2 87 86 
-1 4 2 46 46 -1 6 2 29 29 2 8 2 1 2 

0 4 2 9 8 0 6 2 7 6 3 8 2 53 53 
1 4 2 45 45 1 6 2 49 47 4 8 2 5 3 
2 4 2 15 15 2 6 2 26 26 5 8 2 41 41 
3 4 2 28 28 3 6 2 7 5 6 8 2 19 20 
4 4 2 47 47 4 6 2 16 17 7 8 2 10 10 
5 4 2 19 18 5 6 2 9 8 8 8 2 4 0 
6 4 2 21 22 6 6 2 40 40 9 8 2 6 ç 
7 4 2 19 19 7 6 2 12 11 10 8 2 4 3 
8 4 2 19 19 8 6 2 25 26 -10 9 2 7 6 
9 4 2 9 9 9 6 2 4 4 -9 9 2 18 18 

10 4 2 8 9 10 6 2 18 18 -8 9 2 3 3 
11 4 2 0 3 -10 7 2 8 8 -7 9 2 20 19 

-11 5 2 21 22 -9 7 2 24 25 -6 9 2 16 16 
-10 5 2 12 11 -8 7 2 0 1 -5 9 2 68 68 
-9 5 2 27 27 -7 7 2 26 27 —4 9 2 62 62 
-8 5 2 23 21 -6 7 2 32 32 -3 9 2 11 12 
-7 5 2 44 43 -5 2 20 20 -2 9 2 34 34 
-6 5 2 12 12 -4 7 2 8 10 -1 9 2 0 1 
-5 5 2 32 33 -3 7 2 4 4 0 9 2 45 45 
-4 5 2 31 30 -2 7 2 65 64 1 9 2 5 4 
-3 5 2 4 3 -1 7 2 4 «; 2 9 2 63 64 
-2 5 2 21 19 0 7 2 81 79 3 9 2 4 1 
-1 5 2 34 33 1 7 2 19 18 4 9 2 46 46 
0 5 2 18 19 2 7 2 61 60 5 9 2 15 16 
1 5 2 11 11 3 7 2 29 29 6 9 2 21 22 
2 5 2 28 28 4 7 2 21 21 7 9 2 14 14 
3 5 2 28 28 5 7 2 24 25 8 9 2 2 3 
4 5 2 10 9 6 7 2 25 25 9 9 2 9 9 
5 5 2 35 36 7 7 2 25 26 10 9 2 6 1 
6 5 2 13 14 8 7 2 5 6 -10 10 2 19 19 
7 5 2 23 23 9 7 2 14 15 -9 10 2 0 3 
8 5 2 5 4 10 7 2 0 2 -8 10 2 30 30 
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Table 29. (Continued) 

-7 
-6 
-5 
-4 
3 

-2 
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

-9 
-8 
-7 
—6 
-5 
—4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

-9 
-8 
-7 
-6  
-5 
-4 
-3 
-2 
-1 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
12 
12 
12 
12 
12 
12 
12 
12 
12 

L FO FC H K L FO FC H K L FO FC 

2 4 1 0 12 2 5 5 —6 15 2 8 7 
2 50 48 1 12 2 32 32 -5 15 2 19 20 
2 32 32 2 12 2 16 15 -4 15 2 22 23 
2 61 60 3 12 2 7 8 -3 15 2 15 14 
2 4 3 4 12 2 0 1 -2 15 2 17 16 
2 33 33 5 12 2 24 25 -1 15 2 12 12 
2 6 2 6 12 2 11 10 0 15 2 7 6 
2 3 0 7 12 2 0 2 1 15 2 5 5 
2 15 15 8 12 2 16 16 2 15 2 27 27 
2 17 17 9 12 2 4 4 3 15 2 16 15 
2 32 32 -8 13 2 5 3 . 4 15 2 10 10 
2 29 29 -7 13 2 5 5 5 15 2 S 8 
2 16 17 —6 13 2 5 6 6 15 2 5 5 
2 12 11 -5 13 2 7 8 .7 15 2 7 7 
2 3 1 -4 13 2 19 18 8 15 2 6 2 
2 20 19 -3 13 2 0 2 -7 16 2 C 2 
2 0 1 -2 13 2 39 39 —6 16 2 27 27 
2 28 28 -1 13 2 11 12 -5 16 2 3 5 
2 0 1 0 13 2 45 44 —4 16 2 28 27 
2 13 13 1 13 2 15 14 t3 16 2 13 13 
2 11 11 2 13 2 33 32 -2 16 2 18 19 
2 62 62 3 13 2 9 9 -1 16 2 14 14 
2 7 8 4 13 2 7 7 0 16 2 2 2 
2 40 41 5 13 2 5 0 1 16 2 9 8 
2 26 26 6 13 2 10 11 2 16 2 13 13 
2 17 18 7 13 2 8 9 3 16 2 3 2 
2 12 12 8 13 2 6 4 4 16 2 13 13 
2 13 14 -S 14 2 10 10 5 16 2 0 0 
2 8 9 -7 14 2 2 3 6 16 2 13 14 
2 28 2« —6 14 2 8 8 7 16 2 5 3 
2 2 3 -5 14 2 14 13 -6 17 2 6 5 
2 4 4 —4 14 2 6 7 -5 17 2 24 24 
2 8 8 -3 14 2 35 35 -4 17 2 16 16 
2 20 21 -2 14 2 0 2 -3 17 2 15 15 
2 5 0 -1 14 2 21 2C -2 17 2 22 22 
2 17 16 0 14 2 2 3 -1 17 2 18 17 
2 2 2 1 14 2 41 40 0 17 2 14 14 
2 21 21 2 14 2 8 7 1 17 2 15 15 
2 4 2 3 14 2 14 15 2 17 2 15 14 
2 18 18 4 14 2 10 10 3 17 2 9 8 
2 26 25 5 14 2 15 15 4 17 2 15 15 
2 20 19 6 14 2 C 4 5 17 2 13 13 
2 21 21 7 14 2 1 1 6 17 2 8 a 
2 22 21 8 14 2 5 3 -5 18 2 13 13 
2 41 42 -7 15 2 16 16 —4 18 2 13 12 



www.manaraa.com

Table 29. (Continued) 

135 

H K L FO fC H K 

-3 18 2 27 27 -5 
-2 18 2 9 9 —4 
-1 18 2 29 29 -3 
0 18 2 1 0 -2 
1 18 2 22 23 -1 
2 18 2 10 10 0 
3 18 2 24 23 1 
4 18 2 0 2 2 
5 18 2 13 13 3 
6 18 2 0 1 4 

-3 19 2 7 6 5 
-2 19 2 24 25 6 
-1 19 2 1 3 7 

0 19 2 27 27 8 
1 19 2 3 2 9 
2 19 2 19 19 10 
3 19 2 1 3 -11 2 
4 19 2 15 14 -10 2 
5 19 2 8 7 -9 2 
0 20 2 5 1 -8 2 
1 20 2 16 16 -7 2 
2 20 2 10 9 -6 2 
3 20 2 6 5 -5 2 
4 20 2 7 6 -4 2 
0 21 2 4 3 -3 2 
1 21 2 C 1 -2 2 
2 21 2 0 1 -1 2 
0 22 2 3 2 0 2 

-11 0 3 11 11 1 2 
-9 0 3 28 27 2 2 
-7 0 3 61 59 3 2 
-5 0 3 59 59 4 2 
-3 c 3 96 95 5 2 
-1 0 3 90 92 6 2 

1 0 3 123 12C 7 2 
3 0 3 10 9 8 2 
5 0 3 5 4 9 2 
7 0 3 8 7 10 2 
9 c 3 11 11 -11 3 

-11 1 3 18 19 -10 3 
-10 1 3 18 17 -9 3 

-9 1 3 17 17 -8 3 
-8 1 3 20 20 -7 3 
-7 1 3 2C 19 —6 3 
-6 1 3 40 40 -5 3 

FO FC H X L FO FC 

14 13 -4 3 3 11 11 
110 107 -3 3 3 12 12 

5 4 -2 3 3 4 3 
38 39 -1 3 3 16 19 
50 52 0 3 3 30 29 
98 103 1 3 3 54 54 
45 44 2 3 3 22 21 
17 17 3 3 3 71 71 
32 32 4 3 3 5 5 
22 21 5 3 3 30 30 
24 24 6 3 3 0 2 
4 4 7 3 3 16 17 

17 17 8 3 3 7 7 
15 16 9 3 3 8 9 
11 11 10 3 3 6 6 

0 1 -11 4 3 8 7 
4 4 -10 4 3 20 20 

38 38 -9 4 3 12 12 
8 10 -8 4 3 12 12 

15 15 -7 4 3 11 10 
24 24 -6 4 3 39 39 

8 7 -5 4 3 63 61 
24 23 —4 4 3 8 8 
43 39 -3 4 3 54 55 
35 33 -2 4 3 15 15 
22 24 -1 4 3 15 17 
4 5 0 4 3 25 27 

41 43 1 4 3 8 9 
33 31 2 4 3 57 57 
79 79 3 4 3 8 8 
14 12 4 4 3 11 11 
52 52 5 4 3 7 4 

2 2 6 4 3 28 28 
21 21 7 4 3 0 4 
4 5 8 4 3 4 1 

17 17 9 4 3 14 12 
6 3 10 4 3 9 9 

13 13 -11 5 3 5 2 
27 27 -10 5 3 16 16 
9 10 -9 5 3 3 5 

18 17 -8 5 3 14 13 
5 4 -7 5 3 8 8 

13 13 -6 5 3 49 50 
36 35 -5 5 3 8 9 
21 20 -4 5 3 52 51 

L 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
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Table 29. CCorxtinued) 

H K L FO FC H K L FO FC H K FC FC 

-3 5 3 21 21 -1 7 3 3 3 4 9 3 4 3 
-2 5 3 40 42 0 7 3 62 62 5 9 3 35 35 
-1 5 3 30 31 I 7 3 41 41 6 9 3 12 12 
0 5 3 54 55 2 7 3 12 13 7 9 3 16 15 
1 5 3 28 28 3 7 3 23 21 8 9 3 7 7 
2 5 3 15 14 4 7 3 11 11 9 9 3 6 6 
3 5 3 24 26 5 7 3 30 29 -10 10 3 4 7 
4 5 3 2 1 6 7 3 11 10 -9 10 3 17 16 
5 5 3 14 13 7 7 3 17 17 -8 IC 3 7 .7 
6 5 3 4 4 8 7 3 5 6 -7 10 3 23 23 
7 5 3 9 9 9 7 3 11 11 —6 10 3 20 20 
8 5 3 10 10 -10 8 3 33 32 -5 10 3 75 75 
9 5 3 8 4 -9 8 3 1 1 -4 10 3 0 1 

10 5 3 10 10 -8 8 3 31 31 -3 10 3 47 48 
11 6 3 12 12 -7 8 3 13 13 -2 10 3 17 17 
10 6 3 14 15 -6 8 3 34 35 -1 10 3 39 39 
-9 6 3 23 23 -5 8 3 11 q 0 10 3 7 6 
-8 6 3 14 14 -4 8 3 12 12 1 10 3 41 40 
-7 6 3 23 22 -3 8 3 3 3 2 10 3 18 18 
—6 6 3 5 2 -2 8 3 12 11 3 10 3 8 8 
-5 6 3 45 45 -1 8 3 3 I 4 10 3 12 11 
—4 6 3 5 6 0 8 3 35 35 5 IC 3 18 18 
-3 6 3 48 49 1 8 3 0 1 6 10 3 5 6 
-2 6 3 17 17 2 8 3 37 37 7 10 3 9 8 
-1 6 3 77 78 3 8 3 4 1 8 10 3 4 2 
0 6 3 16 15 4 8 3 37 37 9 10 3 6 5 
1 6 o 31 31 5 8 3 13 12 -9 11 3 8 7 
2 6 3 15 14 6 8 ? 32 32 -8 11 3 21 21 
3 6 3 7 6 7 8 3 7 8 -7 11 3 5 5 
4 6 3 28 29 8 8 3 18 18 —6 11 3 24 25 
5 6 3 3 5 9 8 3 1 2 -5 11 3 3 2 
6 6 3 6 6 -10 9 3 6 7 -4 11 3 56 57 
7 6 3 8 8 -9 9 3 20 20 -3 11 3 15 15 
8 6 3 6 4 -8 9 3 18 17 -2 11 3 47 48 
9 6 3 16 14 -7 o 3 25 25 -1 11 3 15 14 

10 6 3 5 2 —6 9 3 38 38 0 11 3 27 27 
10 7 3 6 7 -5 9 3 30 30 1 11 3 5 4 
-9 7 3 31 33 -4 9 3 24 25 2 11 3 22 23 
-S 7 3 28 28 -3 9 3 14 15 3 11 3 18 18 -7 7 3 14 14 -2 a 3 47 47 4 11 3 5 5 
-6 7 3 15 15 -1 9 3 22 22 5 11 3 17 17 
-5 7 3 15 14 0 9 3 22 23 6 11 3 6 5 
-4 7 3 32 33 1 9 3 11 11 7 11 3 0 3 
-3 7 3 13 13 2 9 3 25 26 3 11 3 9 8 
-2 7 3 29 30 3 9 3 42 41 -9 12 3 9 17 
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Table 29. (.Continued) . 

H K L FO FC H K L FO FC H K L FO FC 

-8 12 3 15 15 3 14 3 1 1 -3 18 3 12 12 
-7 12 3 18 17 4 14 3 16 16 -2 18 3 0 3 
—6 12 3 6 4 S 14 3 7 7 -1 18 3 6 5 
-5 12 3 11 8 6 14 3 22 21 0 18 3 14 14 
—4 12 3 0 1 7 14 3 3 2 1 18 3 7 6 
-3 12 3 15 15 -7 15 3 10 11 2 18 3 16 15 
-2 12 3 19 19 -6 15 3 23 24 3 18 3 3 1 
-1 12 3 38 40 -5 15 3 7 7 4 18 3 14 12 

0 12 3 17 17 -4 15 3 20 21 5 18 3 4 3 
1 12 3 32 33 -3 15 3 25 25 -1 19 3 5 5 
2 12 3 17 17 -2 15 3 16 17 0 19 3 5 5 
3 12 3 9 10 -1 15 3 2 3 1 19 3 20 19 
4 12 3 27 27 0 15 3 15 14 2 19 3 2 1 5 12 3 3 1 1 15 3 19 18 3 19 3 9 8 
6 12 3 14 14 2 15 3 17 17 4 19 3 1 1 7 12 3 3 2 3 15 3 15 14 0 2C 3 7 6 
8 12 3 11 11 4 15 3 8 6 1 20 3 9 8 

-8 13 3 2 2 5 15 3 17 16 2 20 3 4 4 -7 13 3 4 9 6 15 3 4 1 0 21 3 14 13 
-6 13 3 4 4 7 15 3 12 11 1 21 3 C C 
-5 13 3 3 5 -6 16 3 3 1 -10 0 4 24 25 
-4 13 3 5 4 -5 16 3 33 32 -8 0 4 12 12 -3 13 3 18 18 -4 16 3 3 0 -6 0 4 20 20 
-2 13 3 15 14 -3 16 3 32 31 -4 0 4 23 23 
-1 13 3 22 23 -2 16 3 7 9 -2 0 4 80 84 

0 13 3 8 8 -1 16 3 16 16 0 0 4 88 87 
X 13 3 22 21 0 16 3 2 3 2 0 4 28 28 
2 13 3 5 4 1 16 3 18 17 4 c 4 20 19 3 13 3 18 18 2 16 3 9 9 6 0 4 25 26 4 13 3 4 4 3 16 3 16 16 8 0 4 11 10 5 13 3 17 17 4 16 3 5 2 -11 1 4 11 12 6 13 3 5 3 5 16 3 0 1 -10 1 4 28 28 7 13 3 21 21 6 16 3 5 4 -9 1 4 14 13 S 13 3 0 1 -5 17 3 8 8 -8 1 4 37 37 — 8 14 3 18 19 -4 17 3 16 20 -7 1 4 10 10 -7 14 3 12 11 -3 17 3 3 1 -6 1 4 30 29 —6 14 3 10 10 -2 17 3 18 22 -5 1 4 16 16 -5 14 3 12 13 -1 17 3 10 10 -4 1 4 27 27 —4 14 3 8 7 0 17 3 17 18 -3 4 54 56 -3 14 3 7 8 1 17 3 6 3 -2 1 4 5 4 -2 14 3 25 25 2 17 3 13 13 -1 1 4 51 63 -1 14 3 18 18 3 17 3 9 7 0 1 4 35 41 0 14 3 12 12 4 17 3 1 1 1 1 4 17 17 1 14 3 8 8 5 17 3 10 10 2 1 4 20 20 2 14 3 21 20 -4 18 3 3 2 3 1 4 29 28 
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Table 29. (Continued) 

H K L FO FC H K L FO FC H K L FO FC 

4 1 4 12 12 7 3 4 7 6 -10 6 4 17 17 
5 1 4 22 21 8 3 4 12 11 -9 6 4 12 12 
6 1 4 8 7 9 3 4 7 5 -8 6 4 15 16 
7 1 4 16 16 -11 4 4 15 15 -7 6 4 14 13 
8 1 4 16 16 -10 4 4 2 3 —6 6 4 3 2 
9 1 4 C 2 -9 4 4 17 17 -5 6 4 16 15 

-11 2 4 22 22 -8 4 4 9 9 —4 6 4 46 47 
-10 2 4 13 13 -7 4 4 33 32 -3 6 4 5 6 
-9 2 4 33 33 —6 4 4 11 10 -2 6 4 43 47 
-8 2 4 14 13 -5 4 4 27 27 -1 6 4 19 20 
-7 2 4 47 47 -4 4 4 23 24 0 6 4 56 59 
—6 2 4 10 9 -3 4 4 19 22 1 6 4 10 11 
—5 2 4 54 54 -2 4 4 40 49 2 6 4 36 36 
-4 2 4 35 35 -1 4 4 5 6 3 6 4 0 2 
-3 2 4 43 46 0 4 4 33 37 4 6 4 14 12 
-2 2 4 11 12 1 4 4 5 3 5 6 4 7 7 
-1 2 4 3 3 2 4 4 17 17 6 6 4 20 20 

0 2 4 27 31 3 4 4 17 17 7 6 4 3 1 
1 2 4 14 15 4 4 4 33 32 8 6 4 0 3 
2 2 4 16 16 5 4 4 8 8 9 6 4 6 2 
3 2 4 25 24 6 4 4 10 9 -10 7 4 27 27 
4 2 4 10 9 7 4 4 5 4 -9 7 4 10 9 
5 2 4 16 15 8 4 4 2 2 -8 7 4 25 25 
6 2 4 12 13 9 4 4 12 11 -7 7 4 1 1 
7 2 4 14 14 -11 5 4 15 14 -6 7 4 42 42 
8 2 4 5 4 -10 5 4 7 5 -5 7 4 25 26 
9 2 4 17 15 -9 5 4 5 5 -4 7 4 21 22 

-11 3 4 6 5 -8 5 4 19 18 -3 7 4 39 42 
-10 3 4 27 28 -7 5 4 16 17 -2 7 4 21 25 
-9 3 4 9 10 -6 5 4 4 3 -1 7 4 35 39 
—8 3 4 21 20 -5 5 4 20 20 0 7 4 14 13 
-7 3 4 6 5 -4 5 6. 9 8 1 7 4 23 22 
—6 3 4 58 58 3 5 4 41 43 2 7 4 6 6 
—5 3 4 23 22 -2 5 4 15 16 3 7 4 26 24 
—4 3 4 65 67 -1 5 4 40 46 4 7 4 S 9 
-3 3 4 12 12 0 5 4 9 11 5 7 4 11 11 
-2 3 4 O 12 1 5 4 55 55 6 7 4 10 10 
-1 3 4 10 13 2 5 4 18 19 7 7 4 6 6 

0 3 4 20 22 3 5 4 19 19 8 7 4 13 12 
1 3 & 38 38 4 5 4 3 3 -10 8 4 2 0 
2 3 4 19 18 5 5 4 19 17 -9 8 4 37 36 
3 3 4 6 7 6 5 4 2 2 -8 8 4 0 1 4 3 4 17 17 7 5 4 14 13 -7 8 4 36 35 5 3 4 13 13 8 5 4 4 5 -6 8 4 15 15 
6 3 4 13 12 9 5 4 5 2 -5 8 4 68 68 
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Table 29. (Continued) 

H K L PO FC H K L FO FC H K L FO FC 

-4 8 4 41 41 4 10 4 24 24 -1 13 4 3 4 
-3 8 4 14 14 5 10 4 7 8 0 13 4 3 4 
-2 8 4 0 2 6 10 4 9 9 1 13 4 11 12 
-1 8 4 19 20 7 10 4 1 3 2 13 4 4 2 
0 8 4 5 2 8 10 4 2 4 3 13 4 0 1 
1 8 15 15 -9 11 4 5 5 4 13 4 17 16 
2 8 4 4 3 -8 11 4 6 6 5 13 4 7 5 
3 8 4 8 8 -7 11 4 12 11 6 13 4 11 10 
4 8 4 6 4 —6 11 4 10 8 7 13 4 0 3 
5 8 4 14 14 -5 11 4 14 14 -7 14 4 16 16 
6 8 4 5 4 -4 11 4 3 3 -6 14 4 0 1 
7 8 4 17 17 -3 11 4 19 19 -5 14 4 17 17 
8 8 4 0 0 -2 11 4 5 5 -4 14 4 2 1 

10 9 4 18 17 -1 11 4 27 27 -3 14 4 14 14 
-9 9 4 6 2 0 11 4 0 3 -2 14 4 9 9 
-8 9 4 27 27 1 11 4 35 34 -1 14 4 5 6 
-7 9 4 11 10 2 11 4 4 2 0 14 4 15 16 
-6 9 4 39 39 3 11 4 28 28 1 14 4 5 2 
-5 9 4 8 7 4 11 4 13 18 2 14 4 0 1 
-4 9 4 49 49 5 11 4 15 15 3 14 4 10 IC 
-3 9 4 15 16 6 11 4 0 1 4 14 4 8 8 
-2 9 4 15 15 7 11 4 1 3 -6 15 4 15 14 
-1 9 4 32 34 -8 12 4 4 1 -5 15 4 13 12 

0 9 4 7 7 -7 12 4 9 ? —4 15 4 12 12 
1 9 4 31 31 -6 12 4 1 3 -3 15 4 9 10 
2 9 4 5 3 -5 12 4 24 25 -2 15 4 9 8 
3 9 4 15 14 -4 12 4 6 7 -1 15 4 15 14 
4 9 4 10 9 -3 12 4 12 13 0 15 4 6 5 
5 9 4 13 12 -2 12 4 16 15 1 15 4 20 19 
6 9 4 8 8 -1 12 4 8 8 2 15 4 6 5 
7 9 4 4 3 0 12 4 20 21 3 15 4 17 16 
o 9 4 10 ^ A 1 12 4 5 5 —6 16 4 8 8 

-9 10 4 11 11 2 12 4 24 24 -5 16 4 0 0 
-a 10 4 0 0 3 12 4 20 19 -4 16 4 19 18 
-7 10 4 5 6 4 12 4 I 3 -3 16 4 4 4 
-6 10 4 21 22 5 12 4 7 5 -2 16 4 19 19 
-5 10 4 26 26 6 12 4 3 2 -1 16 4 7 8 
-4 10 4 18 19 7 12 4 11 11 0 16 4 14 14 
-3 10 4 18 18 -8 13 4 26 26 1 16 4 2 3 
-2 10 4 25 26 -7 13 4 5 1 2 16 4 28 27 
-i 10 4 4 5 —6 13 4 14 15 -4 17 4 12 11 
0 10 4 36 36 -5 13 4 5 6 -3 17 4 20 20 
I 10 4 8 8 -4 13 4 16 16 -2 17 4 12 11 
2 10 4 42 42 -3 13 4 12 13 -1 17 4 8 6 
3 10 4 6 4 -2 13 4 13 13 0 17 4 6 6 
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Table 29. C Continued.) 

H K L FO FC H 

1 17 4 24 23 -9 
-11 0 5 27 28 -8 
-9 0 5 34 33 -7 
-7 0 5 38 38 —6 
-5 0 5 8 8 -5 
-3 0 5 14 13 —4 
-1 0 5 38 38 -3 

1 0 5 4 4 -2 
3 0 5 30 28 -1 
5 0 5 21 19 0 

-10 1 5 33 33 1 
-9 1 5 22 21 2 
-8 1 5 17 17 3 
-7 1 5 21 21 4 
-6 1 5 15 15 5 
-5 1 5 24 25 6 
-4 1 5 28 27 -10 
-3 1 5 26 27 -9 
-2 1 5 17 19 -8 
-1 1 5 28 32 -7 
0 1 5 0 1 —6 
1 1 5 29 29 -5 
2 1 5 18 18 —4 
3 1 5 6 7 -3 
4 1 5 18 17 -2 
5 1 5 5 3 -1 
6 1 5 12 12 0 

-10 2 5 7 8 1 
-9 2 5 9 6 2 
-8 2 5 25 25 3 
-7 2 5 18 17 4 
-6 2 5 48 43 5 
-5 2 5 0 Û 6 
-4 2 5 46 46 -10 
-3 2 5 9 8 -9 
-2 2 5 24 28 -8 
-1 2 5 4 5 -7 

0 2 5 41 64 -6 
2 5 11 10 -5 

2 2 5 m 18 —4 
3 2 5 11 11 -3 
4 2 5 15 14 -? 
5 2 5 3 3 -1 
6 2 5 5 1 0 

-10 3 c 10 12 1 

L FO FC H K L FO FC 

5 9 10 2 5 5 29 28 
5 4 4 3 5 5 13 12 
5 38 38 4 5 5 25 23 
5 9 8 5 5 5 9 9 
5 47 47 6 5 5 18 17 
5 3 3 -10 6 5 0 1 
5 33 36 -9 6 5 28 29 
5 7 8 -8 6 5 12 11 
5 15 19 -7 6 5 2 2 
5 5 6 —6 6 5 14 14 
5 29 28 -5 6 5 16 16 
5 22 22 —4 6 5 11 12 
5 20 20 -3 6 5 11 11 
5 15 14 -2 6 5 19 21 
5 4 2 -1 6 5 12 13 
5 6 1 0 6 5 3 3 
5 3 3 1 6 5 26 25 
5 16 15 2 6 5 1 3 
5 30 29 3 6 5 23 21 
5 0 1 4 6 5 6 7 
5 16 16 5 6 5 19 17 
5 13 13 6 6 5 5 4 
5 26 27 -10 7 5 17 16 
5 4 5 -9 7 5 9 9 
5 14 15 -8 7 5 20 20 
5 7 7 -7 7 5 17 16 
5 18 19 —6 7 5 8 8 
5 22 21 -5 7 5 22 22 
5 26 25 —4 7 5 12 12 
5 25 24 -3 7 5 34 37 
5 2 1 -2 7 5 11 12 
5 18 18 -1 7 5 26 27 
5 0 1 0 7 5 8 8 
5 31 29 1 7 5 20 19 
5 9 7 2 7 5 20 19 
5 8 8 3 7 5 c 3 
5 21 22 4 7 5 13 12 
5 19 19 5 7 5 8 8 
5 3 3 6 7 5 18 16 
5 3 1 -9 8 5 3 1 
5 4 3 -8 8 5 24 23 
5 18 19 -7 8 5 0 C 
5 16 17 -6 8 5 26 24 
5 4 5 -5 8 5 0 2 
5 10 9 -4 8 5 41 43 

K 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
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Table 29. CContinued) 

H K L FO fC H K L FO FC H K L FO FC 

-3 8 5 11 11 -2 11 5 0 1 0 15 5 11 10 
-2 8 5 34 37 -1 11 5 9 9 1 15 5 6 8 
-1 8 S 9 9 0 11 5 13 13 -4 16 5 0 1 

3 8 5 33 34 1 11 5 0 1 -3 16 c 8 6 
1 8 5 10 9 2 11 Ç 15 14 -2 16 c 9 9 
2 8 5 17 17 3 11 5 6 4 -1 16 5 9 8 
3 8 5 5 5 4 11 5 20 20 0 16 5 6 4 
4 8 5 2 3 -8 12 5 7 7 -10 0 6 26 26 
5 8 5 7 7 -7 12 5 11 10 -8 0 6 30 29 

-9 9 5 12 10 —6 12 5 19 20 -6 0 6 30 30 
-8 9 S 11 12 -5 12 5 4 4 -4 0 6 26 26 
-7 9 5 13. 13 —4 12 5 24 24 -2 0 6 19 le 
—6 9 S Il 11 -3 12 5 1 2 0 0 6 32 30 
-5 9 5 33 34 -2 12 5 26 26 2 0 6 13 10 
—4 9 5 9 8 -1 12 5 3 1 4 0 6 13 12 
-3 9 5 34 34 0 12 5 14 14 -10 1 6 9 10 
-2 9 5 0 0 1 12 5 7 6 -9 1 6 18 18 
-1 9 5 19 20 2 12 5 7 6 -8 I 6 0 1 
0 9 5 15 16 3 12 5 9 10 -7 1 6 17 16 
1 9 5 18 17 4 12 5 3 3 -6 1 6 9 8 
2 9 5 7 7 -7 13 5 17 16 -5 1 6 23 22 
3 9 5 9 8 -6 13 5 1 3 -4 1 6 0 1 
4 9 5 12 13 -5 13 5 16 16 -3 1 6 32 32 
5 9 5 8 8 -4 13 5 3 2 -2 1 6 29 30 

-9 10 S 22 21 -3 13 5 20 21 -1 1 6 13 13 
-8 10 5 8 8 -2 13 5 3 1 0 1 6 27 28 
-7 10 5 12 12 -1 13 5 32 32 1 1 6 1 1 
—6 10 5 5 4 0 13 5 0 2 2 1 6 13 12 
-5 10 5 22 22 1 13 5 18 17 3 1 6 o 7 
—4 10 5 22 22 2 13 5 0 2 4 1 6 9 8 
-3 10 5 5 5 3 13 c 0 2 5 1 6 8 7 
-2 10 5 5 3 —6 14 5 16 15 -10 2 6 2 1 
-1 10 5 8 8 -5 14 5 9 8 -9 2 6 5 4 

0 10 5 4 5 -4 14 5 19 19 -8 2 6 7 6 
1 10 5 10 10 —? 14 5 1 0 -7 2 6 0 2 
2 10 5 5 5 -2 14 5 30 33 -6 2 6 10 10 
3 10 5 29 27 -1 14 5 11 10 -5 2 6 14 14 
4 10 5 4 4 0 14 5 11 11 -4 2 6 18 17 
5 10 5 15 13 1 14 5 4 3 -3 2 6 17 17 

-8 11 5 18 18 2 14 5 12 12 -2 2 6 8 8 
-7 11 5 6 S -5 15 5 13 13 -1 2 6 33 38 
— 6 11 5 9 8 -4 15 5 2 3 0 2 6 5 4 
-5 11 5 26 24 -3 15 5 26 26 1 2 6 22 21 
-4 11 5 13 13 -2 15 5 8 7 2 2 6 0 0 
-3 11 5 14 14 -1 15 5 4 3 3 2 6 • 25 23 
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Table 29. CContinued). 

H K L FO FC H K L FO FC M K L FO FC 

4 2 6 2 4 3 5 6 11 10 -6 9 6 0 2 
5 2 6 12 12 4 5 6 3 1 -5 e 6 16 17 

10 3 6 16 14 -9 6 6 5 4 —4 9 6 11 11 
-9 3 6 14 14 -8 6 6 31 30 -3 9 6 3 2 
-8 3 6 6 5 -7 6 6 2 1 -2 9 6 13 14 
-7 3 6 12 11 -6 6 6 13 13 -1 9 6 4 6 
—6 3 6 3 3 -5 6 6 6 7 0 9 6 16 16 
-5 3 6 16 16 -4 6 6 28 30 1 9 6 8 8 
-4 3 6 14 14 -3 6 6 9 13 2 9 6 17 16 
-3 3 6 2 2 -2 6 6 15 lA 3 9 6 1 2 
-2 3 6 27 29 -1 6 6 5 3 -8 10 6 23 22 
-1 3 6 3 5 0 6 6 9 9 -7 IC 6 0 2 

0 3 6 15 14 1 6, 6 6 6 —6 10 6 32 31 
1 3 6 14 13 2 6 6 2 3 -5 10 6 5 2 
2 3 6 27 27 3 6 6 4 6 -4 10 6 19 19 
3 3 6 7 6 4 6 6 6 8 -3 IC 6 0 1 
4 3 6 19 18 -9 7 6 12 13 -2 10 6 6 8 
5 3 6 0 0 -8 7 6 3 3 -1 10 6 0 1 

-9 4 6 6 5 -7 7 6 15 14 0 10 6 5 6 
— 8 4 6 15 15 -6 7 6 4 2 1 10 6 7 7 
-7 4 6 8 8 -5 7 6 20 20 2 10 6 & 4 
—6 4 6 26 25 -4 7 6 1 3 3 10 6 7 7 
-5 4 € 5 3 -3 7 6 17 18 -7 11 6 17 16 
—4 4 6 24 24 -2 7 6 23 25 -6 11 6 11 11 
-3 4 4 9 9 -1 7 6 6 7 -5 11 6 24 25 
-2 4 6 3 3 0 7 6 18 19 -4 11 6 11 10 
-1 4 6 lo 19 1 7 6 4 3 -3 11 6 13 15 
0 4 6 13 14 2 7 6 11 10 -2 11 6 7 6 
1 4 6 17 17 3 7 6 5 6 -1 11 6 6 6 
2 4 6 3 2 4 7 6 6 5 0 11 6 8 7 
3 4 6 20 18 -8 8 6 5 3 1 11 6 2 3 
4 4 6 7 6 -7 8 6 6 5 2 11 6 3 2 
5 4 6 0 3 -6 8 6 13 13 -Ô 12 6 10 10 

-9 5 6 22 21 -5 8 6 5 5 -5 12 6 12 11 
-8 5 6 3 4 -4 8 6 21 21 —4 12 6 8 8 -7 5 6 32 30 -3 8 6 27 30 -3 12 6 12 10 
-6 5 6 5 2 -2 8 6 2 0 -2 12 6 3 6 
-5 5 6 23 23 -1 8 6 21 25 -1 12 6 17 17 
—4 5 6 6 6 0 8 6 0 2 0 12 6 3 2 -3 5 6 17 17 1 8 6 20 19 1 12 6 8 8 
-2 5 6 3 2 2 8 6 8 a -5 13 6 0 3 
-1 5 6 12 14 3 8 6 13 13 —4 13 6 9 10 0 5 6 12 12 4 8 6 0 2 -3 13 6 6 5 

1 •5 6 11 11 -8 9 6 0 2 -2 13 6 17 17 
2 5 6 15 15 -7 9 6 18 18 -1 13 6 0 1 
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Table 29. (Continued) 

H K L FO FC H K I FO FC H K L FO FC 

0 13 6 18 17 -1 3 7 8 9 -1 7 7 0 2 
-4 14 6 6 6 0 3 7 7 6 0 7 7 12 13 
-3 14 6 14 15 1 3 7 8 7 1 7 7 10 o 
-2 14 6 2 0 2 3 7 7 6 2 7 7 7 7 
-1 14 6 11 12 3 3 7 11 11 -7 8 7 1 1 
-9 0 7 11 11 -8 6 7 13 12 -6 8 7 7 7 
-7 0 7 10 9 -7 4 7 19 18 -5 8 7 4 2 
-5 0 7 28 26 -6 4 7 15 15 -4 8 7 8 8 
-3 0 7 21 20 -5 4 7 20 19 -3 8 7 9 8 
-1 0 7 33 31 —4 4 7 3 4 -2 8 7 0 4 
1 0 7 10 8 -3 4 7 19 20 -1 8 7 5 4 
3 0 7 6 5 -2 4 7 8 9 0 8 7 6 7 

-9 1 7 15 15 -1 4 7 8 8 1 8 7 5 2 
-8 1 7 10 11 0 4 7 5 4 -6 9 7 12 12 
-7 1 7 11 11 1 4 7 12 11 -5 9 7 10 11 
—6 1 7 14 13 2 4 7 3 3 -4 o 7 4 4 
-5 1 7 9 7 3 4 7 8 6 -3 9 7 4 1 
—4 1 7 18 17 -8 5 7 15 13 -2 9 7 8 9 
-3 1 7 3 1 -7 5 7 13 12 -1 9 7 7 8 
-2 1 7 21 2C —6 5 7 21 19 0 9 7 10 10 
-1 1 7 14 14 -5 5 7 4 2 1 9 7 2 3 
0 1 7 14 14 -4 5 7 23 23 -5 10 7 19 21 
1 1 7 3 I -3 5 7 5 6 -4 10 7 9 9 
2 1 7 2 1 -2 5 7 22 24 -3 10 7 15 16 
3 1 7 7 7 -1 5 7 4 6 -2 10 7 6 5 

-9 2 7 7 5 0 5 7 8 8 -1 10 7 9 10 
—8 2 7 17 16 1 5 7 5 2 0 10 7 4 2 
-7 2 7 4 1 2 5 7 14 13 -4 11 7 16 16 
—6 2 7 13 13 -8 6 7 7 6 -3 11 7 3 1 
-5 2 7 12 9 -7 6 7 26 23 -2 11 7 11 11 —4 2 7 13 12 -6 6 7 C 3 -1 11 7 3 3 
-3 2 7 4 3 -5 6 7 10 10 —6 0 8 5 5 
-2 2 11 6 7 Ô 5 —4 0 8 6 5 
-1 2 7 1 t. -3 6 7 26 29 -2 0 8 16 15 

3 2 7 3 5 -2 6 7 1 4 0 0 8 13 11 
1 2 7 6 4 -1 6 7 17 19 —6 1 8 11 10 
2 2 7 14 13 0 6 7 0 1 -5 1 8 8 6 3 2 ? 5 2 1 6 7 12 12 -4 1 8 6 4 

-8 3 7 0 3 2 6 7 5 S -3 1 8 3 3 
-7 3 7 18 18 -7 7 7 0 2 -2 1 8 8 c; 
-6 3 7 19 18 -6 7 7 11 9 -1 1 8 12 11 -5 3 7 12 12 -5 7 7 9 P 0 1 8 8 9 
-4 3 7 8 8 —4 7 7 18 19 -6 2 8 0 0 -3 3 7 3 3 -3 7 7 3 5 -5 2 8 19 17 -2 3 7 7 6 -2 7 7 14 16 -4 2 8 6 4 
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Table 29. (Continued) 

H K L FO FC H K L FO FC H K L FO FC 

-3 2 8 9 9 -1 3 8 8 9 -5 5 8 0 2 
-2 2 8 0 3 0 3 8 3 3 —4 5 8 d 6 
-1 2 8 4 6 —6 4 8 2 2 -3 5 8 9 9 
0 2 8 3 2 -5 4 8 9 8 -2 5 8 3 1 

—6 3 S 20 18 —4 4 8 C 2 -1 5 8 10 10 
-5 3 8 4 2 -3 4 8 6 6 -4 6 8 ç 2 
-4 3 8 15 15 -2 4 8 14 14 -3 6 8 5 3 
-3 3 8 3 5 -1 4 8 2 5 -2 6 8 9 12 
-2 3 8 8 6 
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H 

C 
1 
0 
1 
C 
c 
1 
2 
0 
1 
2 
0 
1 
2 
0 
1 
2 
C 
1 
0 
1 
0 
1 
2 
3 
C 
1 
2 
3 
0 
1 
2 
9 
Ô 
1 
2 
0 
1 
2 
o 
1 
2 
C 
1 
0 

1^5 

30.. Final observed and calculated structiire aoglitudes in 
electrons for nicemg)2 

K L FO FC H K L FO FC H K L FO FC 

0 -14 4 6 1 7 - 2 1 1 2 2 -10 18 17 
0 -14 4 4 0 0 - 1 0 0 3 2 -10 16 16 
1 — 14 3 0 1 0 - 1 2 0 4 2 -10 10 10 
1 -14 0 4 2 0 — 1 0 0 0 3 -10 8 9 
2 -14 7 7 3 0 - 1 0 0 1 3 -10 9 10 
0 -13 0 0 0 1 - 1 14 15 2 3 -10 0 1 
0 -13 0 0 1 1 - 1 10 10 3 3 -10 4 1 
0 -13 3 0 2 1 - 1 9 8 0 4 -10 30 32 
1 -13 7 7 3 1 - 1 13 12 1 4 -10 8 8 
1 -13 10 9 0 2 - 1 0 1 2 4 -10 13 13 
1 -13 8 7 1 2 1 9 9 3 4 -10 15 15 
2 -13 0 1 2 2 - 1 5 5 0 5 -10 6 6 
2 -13 4 4 3 2 - 1 3 4 1 5 -10 5 5 
2 -13 0 0 0 3 - 1 18 19 2 5 -10 1 3 
3 -13 11 11 1 3 - 1 17 17 3 5 -10 0 0 
3 -13 11 11 2 3 - 1 20 20 0 6 -10 16 17 
3 -13 14 14 3 3 - 1 16 16 1 6 -10 0 1 4 -13 C 3 0 4 - 1 7 7 2 6 -10 10 10 4 -13 5 3 1 4 - 1 2 3 3 6 -10 12 12 5 -13 5 3 2 4 - 1 3 2 0 7 -10 5 6 5 -13 6 7 3 4 - 1 3 3 1 7 -10 0 0 C -12 IC 11 0 5 - 1 12 12 2 7 -10 2 2 
0 -12 8 7 1 5 - 1 2 2 0 8 -10 11 11 0 -12 6 6 2 5 - 1 9 8 1 8 -10 8 9 0 -12 9 9 3 5 - 1 11 10 2 8 -10 7 7 
1 -12 3 2 0 6 - 1 3 3 0 9 -10 2 2 1 -12 4 4 1 6 — 1 3 4 1 9 -10 0 1 1 -12 0 1 2 6 - 1 0 0 0 0 -9 1 0 
1 -12 0 2 0 7 - 1 5 7 1 0 -9 0 0 2 -12 9 10 1 7 - 1 5 5 2 C -9 0 0 2 -12 12 12 2 7 - 1 10 11 3 0 -9 3 c 
2 -12 15 15 0 8 - 1 0 2 4 0 -9 0 0 
2 -12 13 13 1 8 - 1 0 1 0 1 -9 21 23 3 -12 5 3 0 0 - 0 8 Q 1 1 -9 17 17 3 -12 1 0 1 0 - 0 22 22 2 1 -9 20 20 3 
4 

-12 
-12 

0 
12 

2 
12 

2 
3 

0 
0 

0 
c 

3 
9 

3 
9 

3 
4 1 

-9 
-9 

o 
12 

5 
12 4 -12 10 10 4 0 - 0 14 13 0 2 -9 7 7 4 -12 12 13 0 1 - 0 3 4 1 2 -9 0 1 5 -12 3 1 1 1 - 0 4 2 2 2 -9 11 10 5 -12 3 2 2 1 - 0 1 0 3 2 -9 6 6 5 -12 0 0 3 1 - 0 5 6 4 2 -9 4 4 6 -12 4 4 4 1 - 0 3 2 0 3 -9 22 23 6 —12 3 3 0 2 — 0 15 16 1 3 -9 20 20 7 -12 5 2 1 2 — 0 20 21 2 3 -9 17 17 
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Table 30. (Continued) 

H K L FO FC H K L FO FC H K 

3 3 -9 21 20 2 3 -8 3 3 0 2 
4 3 -9 14 13 3 3 -8 3 3 1 2 
0 4 -9 3 2 4 3 -8 4 4 2 2 
1 4 -9 9 9 0 4 -8 22 24 3 2 
2 4 -9 4 5 1 4 -8 37 38 4 2 
3 4 -9 4 4 2 4 -8 2 2 0 3 
4 4 -9 0 1 3 4 -8 13 13 1 3 
0 5 -9 32 35 4 4 -8 14 13 2 3 
1 5 -9 21 21 0 5 -8 6 6 3 3 
2 5 -9 0 2 1 5 -8 10 11 4 3 
3 5 -9 12 13 2 5 -8 8 9 0 4 
0 6 -9 1 3 3 5 -8 1 1 1 4 
1 e -9 0 0 4 5 -8 0 0 2 4 
2 6 -9 1 1 0 6 -8 11 12 3 4 
3 6 -9 5 3 1 6 -8 28 29 4 4 
C 7 -9 11 11 2 6 -8 6 5 0 5 
1 7 -9 9 IC 3 6 -8 12 12 1 5 
2 7 -9 7 7 4 6 —8 11 10 2 5 
3 7 -9 14 14 0 7 -8 1 2 3 5 
0 8 -9 1 1 1 7 -8 6 7 4 5 
1 8 -9 6 6 2 7 -8 0 4 0 6 
2 8 -9 0 1 3 7 -8 3 3 1 6 
3 8 -9 0 1 0 8 -8 15 15 2 6 
C 9 -9 13 12 1 8 -8 12 13 3 6 
1 9 -9 8 9 2 8 -8 9 10 4 6 
2 9 -9 7 7 3 8 -8 9 8 0 
C 10 -9 1 1 C 9 -8 0 1 1 
1 IC -9 3 4 1 9 -8 0 1 2 
0 0 -8 54 59 2 9 -8 2 1 3 
1 0 -8 7 8 3 9 -8 2 2 4 
2 0 -8 19 20 0 10 -8 14 15 0 8 
3 0 -8 8 7 1 10 -8 6 5 1 8 
4 0 -8 14 15 2 10 -8 9 9 2 8 
0 1 -8 7 8 0 11 -8 3 1 3 8 
X I -8 1 2 1 11 -8 0 2 0 9 
2 1 — 5 6 5 0 0 -7 8 0 1 9 
3 I -8 4 6 1 0 -7 2 0 2 9 
4 1 -8 7 7 2 0 -7 2 0 3 9 
C 2 -8 25 27 3 0 -7 C 0 0 10 
1 2 -8 22 22 4 0 -7 4 0 1 10 
2 2 -8 28 28 0 1 -7 38 41 2 10 
3 2 -8 19 18 1 1 -7 31 31 C 11 
4 2 -8 12 12 2 1 -7 29 28 1 11 
0 3 -8 0 2 3 1 -7 17 17 2 11 
1 3 -8 6 7 4 1 -7 14 14 0 12 

FO FC 

0 2 
0 2 
9 10 
7 7 
6 8 

22 24 
32 31 
16 16 
11 11 
14 12 
4 5 
3 3 
2 3 

11 11 
0 3 

17 18 
40 42 
16 16 
10 10 
13 13 

8 8 
11 12 

3 3 
3 3 
4 3 
9 10 

20 22 
12 14 

8 9 
8 9 
5 4 
8 9 
1 4 
0 2 

18 19 
12 12 

5 7 
7 6 
0 0 
2 1 
4 2 
9 9 
9 8 

10 10 
5 3 
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Table 30. CContinued) 

H K L FC FC H K L FO FC H K L FO FC 

0 0 -6 49 54 1 8 -6 18 18 4 4 -5 2 2 
1 C —6 60 58 2 8 —6 8 8 5 4 -5 0 0 
2 0 —6 17 17 3 8 -6 8 9 0 5 -5 17 18 
3 0 -6 29 29 4 8 —6 8 8 1 5 -5 9 10 
4 0 -6 10 10 0 9 -6 2 2 2 5 -5 38 40 
5 0 -6 16 15 1 9 -6 3 3 3 5 -5 8 8 
0 1 -6 8 7 2 9 —6 2 1 4 5 -5 14 14 
1 1 —6 7 7 3 9 —6 4 1 0 6 -5 8 8 
2 1 -6 7 7 0 10 -6 12 13 1 6 -5 9 9 
3 I —6 14 13 1 10 -6 15 15 2 6 -5 11 12 
4 1 —6 7 7 2 10 —6 7 6 3 6 -5 3 2 
5 1 —6 3 2 3 10 — 6 9 9 4 6 -5 0 1 
C 2 —6 14 15 0 11 -6 1 2 0 7 -5 12 13 
1 2 -6 31 31 1 11 —6 2 1 1 7 -5 22 23 
2 2 -6 30 30 2 11 —6 0 0 2 7 -5 35 36 
3 2 —6 22 21 0 12 —6 7 7 3 7 -5 10 11 
4 2 —6 10 10 1 12 —6 9 8 4 7 -5 7 8 
5 2 -6 10 9 0 0 -5 C 0 0 8 -5 0 2 
C 3 -6 21 22 1 0 -5 2 0 1 8 -5 11 12 
1 3 —6 9 8 2 0 -5 0 0 2 8 -5 0 3 
2 3 -6 2 4 3 0 -5 2 0 3 8 -5 3 5 
3 3 -6 3 5 4 0 -5 2 0 4 8 -5 0 1 
4 3 -6 0 1 5 0 -5 0 0 0 9 -5 16 15 
5 3 -6 2 3 0 1 -5 27 28 1 9 -5 19 20 
0 4 -6 28 29 1 1 -5 70 67 2 9 -5 5 5 
1 4 —6 32 33 2 1 -5 18 18 3 9 -5 7 6 
2 4 -6 26 26 3 1 -5 33 32 0 10 -5 2 1 3 4 -6 2 2 4 1 -5 16 15 1 10 -5 5 4 
4 4 -6 16 15 5 1 -5 13 12 2 10 -5 0 0 
0 5 -6 3 3 0 2 -5 21 22 3 10 -5 0 2 
1 5 -6 12 13 1 2 -5 3 3 0 11 -5 4 2 
2 5 —6 7 8 2 2 -5 13 12 1 11 -5 12 12 3 S -6 1 3 3 2 -5 4 3 2 11 -5 7 7 
4 5 —6 0 0 4 2 -5 6 6 0 12 -5 3 0 
C 6 —6 8 9 5 2 -5 4 4 1 12 -5 0 1 
1 6 —6 30 32 C 3 —5 24 24 2 12 -5 0 0 
2 6 -6 32 34 1 3 -5 34 35 0 13 -5 10 9 
3 6 -6 7 8 2 3 -5 38 38 0 0 -4 3 3 
4 6 —6 13 13 3 3 -5 9 8 1 0 -4 70 69 
0 7 —6 6 7 4 3 -5 4 4 • 2 0 —4 55 51 
1 7 —6 6 7 5 3 -5 7 6 3 0 -4 25 23 
2 7 -6 5 5 0 4 -5 6 6 4 0 —4 35 30 
3 7 —6 0 4 1 4 -5 7 7 5 0 -4 13 12 
4 7 

8 
—6 2 2 2 4 -5 9 9 0 1 -4 1 2 0 

7 
8 —6 12 13 3 4 -5 7 6 1 1 -4 37 34 
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Table 30. (Continued) 

H K L FO FC H K L FC FC H K L FO FC 

2 1 —4 5 3 2 9 -4 5 3 5 4 -3 3 3 
3 1 —4 10 10 3 9 -4 0 2 0 5 -3 57 58 
4 1 -4 4 4 4 9 —4 0 2 1 5 -3 17 19 
5 1 -4 6 4 0 10 —4 0 1 2 5 -3 12 12 
0 2 —4 4 5 1 10 -4 12 13 3 5 -3 24 25 
1 2 -4 45 43 2 10 -4 12 13 4 5 -3 8 9 
2 2 -4 46 43 3 10 -4 7 6 5 5 -3 9 9 
3 2 —4 19 18 0 11 -4 5 4 0 6 -3 0 5 
4 2 —4 8 8 1 11 -4 2 4 1 6 -3 11 12 

2 -4 6 6 2 11 —4 0 1 2 6 -3 6 7 
C 3 -4 7 7 3 11 —4 0 1 3 6 -3 4 3 
1 3 -4 16 15 0 12 —4 2 3 4 6 -3 2 3 
2 3 -4 17 17 1 12 -4 10 10 0 7 -3 21 21 
2 3 -4 3 1 2 12 —4 8 8 1 7 -3 21 21 
4 3 —4 <5 9 0 13 -4 2 1 2 7 -3 31 33 
5 3 -4 0 3 1 13 -4 0 0 3 7 -3 26 27 
0 4 -4 42 45 0 0 -3 0 0 4 7 -3 9 9 
1 4 —4 16 17 1 0 -3 1 0 0 8 -3 9 8 
2 4 -4 22 23 2 0 -3 2 0 1 8 -3 5 5 
3 4 -4 20 20 3 0 -3 0 0 2 8 -3 11 11 
4 4 —4 3 . 3 4 0 -3 0 0 3 8 -3 8 9 
5 4 -4 10 9 5 0 -3 0 0 4 8 -3 4 4 
0 5 —4 11 11 0 1 -3 35 37 0 9 -3 15 15 
1 5 —4 14 14 I 1 -3 33 31 1 9 -3 13 14 
2 5 —4 0 3 2 1 -3 66 58 2 9 -3 12 13 
3 5 —4 2 1 3 1 -3 28 25 3 9 -3 6 5 
A 5 -4 0 0 4 1 -3 21 19 4 9 -3 5 6 
5 5 -4 3 0 5 1 -3 11 11 0 10 -3 4 4 
0 6 —4 21 21 0 2 -3 1 2 1 10 -3 5 4 
1 C -4 9 10 1 2 -3 36 34 2 10 -3 4 1 
2 6 -4 39 41 2 Z -3 19 18 3 10 -3 3 3 3 6 -4 30 30 3 2 -3 19 19 0 11 -3 0 1 4 t -4 7 8 6. 2 -3 8 8 1 11 -3 7 6 0 7 —4 3 C 5 2 -3 0 1 2 11 -3 13 13 1 7 -4 2 2 0 3 -3 11 12 3 11 -3 7 6 2 7 —4 4 2 1 3 -3 17 19 G 12 -3 5 2 3 7 —4 0 3 2 3 -3 38 37 1 12 -3 7 5 4 7 -4 1 4 3 3 -3 26 26 2 12 -3 0 1 C 8 -4 25 26 4 3 -3 4 5 0 13 -3 10 8 1 8 -4 18 19 5 3 -3 4 3 1 13 -3 8 8 2 8 —4 18 19 0 4 -3 20 20 0 0 -2 56 56 3 8 -4 5 5 1 4 -3 2 2 1 0 -2 38 35 4 8 —4 6 6 2 4 -3 11 11 2 0 -2 30 26 0 Ç -4 5 • 5 3 4 -3 9 a 3 0 -2 35 30 1 9 -4 8 9 4 4 -3 4 4 4 0 -2 24 24 
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30. (Continued.) 

K l FO FC H K L F G FC H k L FO FC 

0 -2 16 17 3 8 -2 17 18 1 4 5 3 
l -2 27 25 4 8 -2 5 6 2 4 2 3 
1 -2 11 iO 0 9 -2 3 3 3 4 3 4 
1 -2 24 19 1 9 -2 5 7 4 4 6 5 
1 -2 0 2 2 9 -2 6 6 5 4 6 0 
1 -2 0 1 3 9 -2 2 2 0 5 53 52 
1 -2 4 3 4 9 -2 4 3 1 5 53 55 
2 -2 18 20 0 10 —2 5 5 2 5 2 4 
2 -2 39 38 1 10 -2 3 1 3 5 23 24 
2 -2 62 59 2 10 -2 7 7 4 5 15 16 
2 -2 36 35 3 10 -2 9 8 5 5 6 6 
2 -2 8 9 0 11 -2 2 0 0 6 10 9 
2 -2 0 3 1 11 -2 0 0 1 6 7 7 
3 -2 34 36 2 11 -2 0 0 2 6 3 3 
3 -2 35 36 3 11 -2 0 0 3 6 11 11 3 -2 2 1 0 12 -2 10 10 4 6 0 0 3 -2 5 5 1 12 -2 9 7 5 6 0 3 
3 -2 0 1 2 12 -2 12 11 0 7 29 29 3 -2 3 2 0 13 -2 C 1 1 7 29 30 
4 -2 64 64 1 13 -2 3 2 2 7 21 22 4 -2 12 12 0 0 -1 0 0 3 7 25 26 4 -2 9 10 1 0 -1 2 0 4 7 12 13 4 -2 18 18 2 0 -1 1 0 0 8 4 1 4 -2 12 13 3 0 -1 0 0 1 8 12 12 4 -2 4 5 4 0 -1 0 0 2 8 2 3 5 -2 20 19 5 0 -1 0 0 3 8 2 1 5 -2 16 15 0 1 -1 97 101 4 8 4 6 5 -2 7 7 1 1 -1 14 14 0 9 27 27 5 -2 7 7 2 1 -1 59 54 1 9 6 6 5 -2 4 5 3 1 -1 34 34 2 9 10 9 5 -2 0 2 4 1 -1 18 19 3 9 10 10 6 -2 41 40 5 1 -1 9 10 4 9 7 6 6 -2 16 17 0 2 -1 30 32 0 10 1 2 6 -2 23 25 1 2 -1 34 32 1 10 7 7 6 -2 28 29 2 2 -1 7 8 2 10 2 0 6 
6 

-2 
-2 

13 
6 

15 
7 

3 
4 

2 
2 

-1 
-1 

5 
5 

6 
6 

3 
0 

10 
11 

5 
14 

2 
12 -2 20 19 5 2 -1 6 7 1 11 3 2 —2 6 6 0 3 -1 28 26 2 11 12 12 -2 8 8 1 3 -1 15 15 3 11 9 8 -2 6 6 2 3 -1 17 17 0 12 3 1 -2 6 4 3 3 -1 24 24 1 12 4 2 8 -2 28 28 4 3 -1 12 13 2 12 5 3 e -2 25 26 5 3 -1 2 4 0 13 14 13 8 -2 22 23 0 4 -1 15 14 1 13 8 7 
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30. (Continued) 

K L FO FC H K L FO FC H K L FO FC 

11 1 8 8 3 6 2 18 18 2 2 3 6 6 
12 1 0 1 4 6 2 12 13 3 2 3 2 0 
12 1 c 5 5 6 2 4 4 4 2 3 3 4 
12 1 4 4 0 7 2 20 19 5 2 3 0 2 
13 1 14 13 1 7 2 5 4 0 3 3 11 12 
13 1 11 10 2 7 2 4 4 1 3 3 27 28 
0 2 58 56 3 7 2 0 2 2 3 3 29 28 
0 2 156 146 4 7 2 3 5 3 3 3 13 12 
0 2 29 26 0 8 2 28 28 4 3 3 11 11 
C 2 31 29 1 8 2 26 26 5 3 3 9 9 
0 2 19 18 2 8 2 4 4 0 4 3 21 20 
0 2 13 12 3 8 2 6 7 l 4 3 15 15 
1 2 27 25 4 8 2 8 8 2 4 3 8 8 
1 2 79 75 0 9 2 2 3 3 4 3 0 2 
1 2 11 12 1 9 2 7 8 4 4 3 0 2 
1 2 9 6 2 9 2 6 7 5 4 3 0 2 
1 2 0 0 3 9 2 2 3 0 5 3 60 58 
1 2 2 1 4 9 2 4 0 1 5 3 34 34 
2 2 19 20 0 10 2 6 5 2 5 3 29 30 
2 2 46 45 1 10 2 23 22 3 5 3 11 12 
2 2 23 22 2 10 2 8 7 4 5 3 11 12 
2 2 17 17 3 10 2 9 9 5 5 3 • 7 7 
2 2 15 14 0 11 2 2 0 0 6 3 5 5 
2 2 9 10 1 11 2 0 1 1 6 3 1 1 
3 2 35 36 2 11 2 0 2 2 6 3 0 0 
3 2 0 2 3 11 2 3 4 3 6 3 7 7 
3 2 17 17 0 12 2 11 10 4 6 3 5 5 
3 2 7 7 1 12 2 14 13 0 7 3 21 21 
3 2 9 10 2 12 2 8 6 1 7 3 23 24 
3 2 2 3 0 13 2 0 1 2 7 3 26 28 
4 2 64 64 1 13 2 3 1 3 7 3 11 12 4 2 24 24 0 0 3 0 0 4 7 3 8 9 
4 2 27 26 1 0 3 3 0 0 8 3 9 8 
4 2 5 5 2 0 3 2 0 1 8 3 6 6 4 2 16 16 3 0 3 C 0 2 8 3 4 4 
4 2 7 7 4 0 3 0 0 3 8 3 5 5 5 2 20 19 5 0 3 3 0 4 8 3 0 0 
5 2 0 0 0 1 3 36 37 0 9 3 15 15 5 2 4 5 1 1 3 99 96 1 9 3 23 23 5 2 5 6 2 1 3 29 29 2 9 3 7 7 
5 2 6 5 3 1 3 19 19 3 9 3 3 3 5 2 0 3 4 1 3 15 14 4 9 3 6 6 6 2 40 4C 5 1 3 11 10 0 10 3 5 4 
6 2 33 33 0 2 3 3 2 1 10 3 4 1 6 2 39 41 1 2 3 34 31 2 10 3 1 C 
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Table 30. (Continued) 

h K L FO FC H K L FO FC H K L FO FC 

o IC 3 3 1 0 6 4 22 21 1 2 5 5 3 
C 11 3 1 1 1 6 4 20 20 2 2 5 35 35 
1 11 3 16 15 2 6 4 22 22 3 2 5 4 4 
2 11 3 12 11 3 6 4 19 20 4 2 5 2 3 
3 11 3 7 6 4 6 4 8 8 5 2 5 0 2 
0 12 3 2 2 0 7 4 1 0 0 3 5 25 24 
1 12 3 4 2 1 7 4 1 2 1 3 5 34 32 
2 12 3 4 4 2 7 4 0 0 2 3 5 33 33 
C 13 3 IC 8 3 7 4 7 8 3 3 5 16 17 
1 13 3 9 9 4 7 4 2 1 4 3 5 6 7 
0 0 4 4 3 0 8 4 26 26 5 3 5 6 7 
1 0 4 43 41 1 8 4 25 25 0 4 5 6 ; 6 
2 C 4 47 45 2 8 4 19 20 1 4 5 28 29 
3 0 4 8 7 3 8 4 5 4 2 4 5 3 1 
4 C 4 2C 18 4 8 4 5 4 3 4 5 10 11 
5 0 4 9 9 C 9 4 6 5 4 4 5 5 1 
C 1 4 2 2 1 9 4 0 1 0 5 5 16 18 
1 1 4 43 41 2 9 4 1 3 1 5 5 32 34 
2 1 4 30 28 3 9 4 0 1 2 5 5 16 16 
3 1 4 0 2 0 IC 4 1 1 3 5 5 16 15 
4 1 4 2 3 1 10 4 9 8 4 5 5 10 10 
5 1 4 3 1 2 10 4 15 14 0 6 5 8 8 
C 2 4 3 5 3 10 4 6 5 1 6 5 11 11 
1 2 4 52 51 0 11 4 4 4 2 6 5 5 5 
2 2 4 48 49 1 11 4 •a 4 3 6 5 0 1 
3 2 4 14 14 2 11 4 0 1 4 6 5 4 3 
4 2 4 7 8 3 11 4 2 2 0 7 5 14 13 
5 2 4 8 7 0 12 4 5 3 1 7 5 22 23 
C 3 4 8 7 1 12 4 12 10 2 7 5 17 18 
1 3 4 7 7 2 12 4 IC 9 3 7 5 10 11 
2 3 4 5 3 0 13 4 G 1 4 7 5 5 4 
3 3 4 6 6 1 13 4 2 0 0 8 5 3 2 4 3 4 5 5 0 0 5 C 0 1 8 5 5 4 
5 3 4 2 1 1 0 5 2 0 2 8 5 S S 
C 4 4 44 45 2 0 5 2 0 3 8 5 8 8 
1 4 4 38 39 3 0 5 0 0 4 8 5 0 2 2 4 4 15 15 4 0 5 0 0 0 9 5 16 15 3 4 4 18 17 5 0 5 c 0 1 9 5 13 12 4 4 4 7 8 0 1 5 29 2ë 2 9 5 14 14 
- 4 4 9 10 I 1 5 12 12 3 9 5 6 7 
c 5 4 11 11 2 1 5 45 45 0 10 5 0 1 1 S 4 4 4 3 I 5 17 18 1 10 5 0 0 2 5 4 8 9 4 1 5 8 8 2 10 5 3 3 3 5 4 7 9 5 1 5 5 6 3 10 5 0 2 4 5 4 5 4 0 2 5 22 22 0 11 5 0 2 
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Table 30. CContinued) 

H K L FO FC H K L FO FC H K L FO FC 

1 11 5 3 3 2 7 6 4 4 0 5 7 18 18 
2 11 5 14 12 3 7 6 2 1 1 5 7 14 15 
C 12 5 0 0 4 7 6 4 5 2 5 7 9 9 
1 12 5 4 5 0 8 6 14 13 3 5 7 12 12 
2 12 5 0 1 1 8 6 15 15 4 5 7 4 5 
0 13 5 11 9 2 8 6 15 16 0 6 7 8 8 
c C 6 55 54 3 8 6 11 11 1 6 7 5 5 
1 0 6 22 21 C 9 6 0 2 2 6 7 4 2 
2 0 6 7 8 1 9 6 10 9 3 6 7 1 5 
3 0 6 16 16 2 9 6 0 0 4 6 7 3 1 
4 0 6 4 6 3 9 6 3 2 0 7 7 11 10 
5 c 6 6 5 0 10 6 14 13 1 7 7 11 11 0 I 6 8 7 1 10 6 7 6 2 7 7 15 14 
1 1 6 2 2 2 10 6 7 7 3 7 7 11 11 
2 1 6 11 11 3 10 6 9 8 0 8 7 5 4 
3 1 6 6 6 0 11 6 4 2 1 8 7 3 2 
4 1 6 0 0 1 11 6 5 4 2 8 7 3 3 
5 1 6 3 3 2 11 6 3 4 3 8 7 3 3 C 2 6 15 15 C 12 6 8 7 0 9 7 20 19 
1 2 6 20 20 1 12 6 0 3 1 9 7 8 9 
2 2 6 37 36 0 0 7 7 0 2 9 7 10 9 
3 2 6 26 26 1 0 7 0 0 3 9 7 9 8 
4 2 6 8 8 2 0 7 2 0 0 10 7 2 0 
C a 6 22 22 3 0 7 2 0 1 10 7 0 3 
1 3 6 18 18 4 0 7 1 0 2 10 7 3 0 
2 3 6 2 3 0 1 7 42 41 0 11 7 10 9 
3 3 6 4 5 1 1 7 10 9 1 11 7 4 3 4 3 6 4 5 2 1 7 17 18 0 12 7 3 3 0 4 6 29 29 3 1 7 14 13 0 0 8 61 59 
1 4 6 25 25 4 1 7 9 9 1 0 8 15 16 
2 4 6 25 26 C 2 7 2 2 2 0 8 10 10 3 4 6 11 12 1 2 7 12 13 3 0 8 8 7 4 4 6 9 9 2 2 7 4 5 4 0 8 6 7 C 5 6 2 3 3 2 7 11 12 0 1 8 8 8 5 6 4 4 4 2 7 2 1 1 1 8 8 9 2 5 6 2 2 0 3 7 23 24 2 1 8 1 1 3 5 6 6 6 1 3 7 25 25 3 1 8 0 0 4 6 fc 5 2 3 7 29 29 4 1 8 1 0 C 6 6 10 9 3 3 7 22 22 0 2 8 27 27 1 6 6 13 13 4 3 7 9 9 1 2 8 11 11 2 é 6 19 19 0 4 7 5 5 2 2 8 17 17 3 6 6 8 8 1 4 7 C 0 3 2 8 18 16 4 fc 6 5 5 2 4 7 11 11 4 2 8 10 10 C 7 6 7 7 3 4 7 4 1 0 3 8 2 2 I 7 6 1 0 4 4 7 4 5 1 3 8 0 2 
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32 
16 
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30 .. CContinued) 

K L FO FC 

3 8 5 5 
3 8 4 4 
3 8 0 1 
4 8 24 24 
4 8 22 22 
4 8 14 13 
4 8 15 15 
4 8 8 8 
5 8 S 6 
5 8 2 0 

8 2 1 
5 8 0 2 
5 8 2 2 
6 8 12 12 
6 8 12 12 
6 8 9 9 
6 8 9 9 
7 8 2 2 
7 8 3 4 
7 8 2 1 
7 8 3 3 
8 8 15 15 
S 8 7 7 
8 8 7 7 
8 8 8 8 
9 8 3 1 
9 8 1 1 
9 8 2 4 

10 8 16 15 
10 8 7 8 
IC 8 8 7 
11 8 0 1 
11 8 C 1 
0 9 1 0 
0 9 C 0 
0 9 1 0 
0 9 C 0 
0 9 3 0 
1 9 24 23 
1 9 26 26 
1 9 S 6 
1 9 9 8 
1 9 8 6 
2 9 7 7 
2 9 4 4 

H K L FO FC H K L FO 

2 2 9 5 5 1 3 10 5 
3 2 9 4 3 2 3 10 1 
4 2 9 3 2 3 3 10 4 
C 3 9 23 23 0 4 10 33 
1 3 9 14 14 1 4 10 16 
2 3 9 15 14 2 4 10 10 
3 3 9 15 15 3 4 10 8 
4 3 9 IC 11 0 5 10 7 
0 4 9 3 2 1 5 10 0 
1 4 9 4 3 2 5 10 0 
2 4 9 0 2 3 5 10 2 
3 4 9 2 2 0 6 10 18 
0 5 9 34 35 1 6 10 10 
1 5 9 12 12 2 6 10 5 
2 5 9 10 10 3 6 10 5 
3 5 9 8 7 0 7 10 5 
0 6 9 4 3 1 7 10 3 
1 6 9 0 2 2 7 10 3 
2 6 9 3 3 0 8 10 12 
3 6 9 0 2 1 8 10 11 
0 7 9 11 11 2 8 10 3 
1 7 9 3 4 0 9 10 2 
2 7 9 6 7 1 9 10 3 
3 7 9 6 7 0 0 11 0 
0 8 9 2 1 1 0 11 2 
1 8 9 0 3 . 2 0 11 0 
2 8 9 C 1 3 0 11 0 
0 9 9 14 12 0 1 11 16 
1 9 9 12 11 1 . 1 11 15 
2 9 9 3 4 2 1 11 9 
0 10 9 0 1 3 1 11 7 
1 10 9 3 0 0 2 11 1 
0 0 10 10 o 1 2 11 1 
1 0 10 22 22 2 2 11 4 
2 0 10 7 8 3 2 11 3 
3 0 IC 7 6 0 3 11 20 
0 1 10 4 4 1 3 11 17 
1 1 10 11 10 2 3 11 8 
2 1 10 3 2 3 3 11 5 
3 1 10 5 4 0 4 11 8 
C 2 10 17 16 1 4 11 4 
1 2 10 19 18 2 4 11 1 
2 2 10 12 11 3 4 11 4 
3 2 10 8 9 0 5 11 13 
C 3 10 9 9 1 5 11 18 
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(Continued) 

L FO FC H K L FO FC H k L FO 

11 8 8 1 2 12 14 13 2 0 13 0 
11 3 3 2 2 12 11 10 0 1 13 9 
11 2 2 0 3 12 0 3 1 1 13 6 
11 0 0 1 3 12 6 6 2 1 13 8 
11 7 7 2 3 12 3 1 0 2 13 0 
11 9 8 0 4 12 14 12 1 2 13 4 
11 2 4 1 4 12 18 16 2 2 13 0 
11 5 2 2 4 12 9 8 0 3 13 12 
11 3 1 0 5 12 2 1 1 3 13 14 
12 11 11 1 5 12 2 0 0 4 13 4 
12 9 10 2 5 12 0 0 1 4 13 4 
12 8 8 0 6 12 6 4 0 5 13 4 
12 0 2 1 6 12 8 8 0 0 14 7 
12 0 0 0 7 12 0 2 0 1 14 4 
12 4 3 0 0 13 C C 0 2 14 8 
12 11 10 1 0 13 0 0 
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Table 31. Final observed and calculated structure amplitudes in 
electrons for NiClMG)2 

H K L FO FC H K I FO FC H K L FO FC 

4 0 0 34 33 14 4 0 18 19 2 10 0 28 23 
6 0 0 56 58 16 4 0 32 31 4 10 0 15 14 
8 0 0 108 107 18 4 0 21 19 6 10 0 38 35 

10 0 0 38 40 1 5 0 103 100 8 10 0 28 27 
12 0 0 64 63 3 5 0 108 106 10 10 0 20 19 
14 0 0 36 37 5 5 0 34 33 1 11 0 44 35 
16 0 0 23 20 7 5 0 36 38 3 11 0 23 21 
18 0 0 25 26 9 5 0 87 89 5 11 0 27 21 

1 1 0 187 192 11 5 n 57 60 7 11 0 32 26 
3 1 0 28 28 13 5 0 16 19 9 11 0 17 17 
5 1 0 100 101 15 5 0 23 24 0 12 0 19 23 
T 1 0 124 124 17 5 0 15 21 2 12 0 17 21 
9 1 0 69 71 0 6 0 55 57 4 12 0 25 19 

11 1 0 38 42 2 6 0 66 63 1 0 1 3 0 
13 1 0 46 51 4 6 0 66 68 3 0 1 0 0 
15 1 0 23 23 6 6 0 46 44 5 0 1 5 0 
17 1 0 25 24 8 6 0 84 85 7 0 1 7 0 
19 1 0 16 18 10 6 0 66 69 9 0 1 3 0 
0 2 0 31 30 12 6 0 23 24 11 0 1 6 0 
2 2 0 15 22 14 6 0 18 16 13 0 1 0 0 
4 2 0 19 20 16 6 0 19 20 15 0 1 0 0 
6 2 0 107 107 1 7 0 54 50 17 0 1 0 0 
8 2 0 94 96 3 7 0 53 52 19 0 1 6 0 

10 2 0 63 63 5 7 0 52 51 0 1 1 1 0 
12 2 0 34 33 7 7 0 42 43 2 1 1 42 42 
14 2 0 21 18 9 7 0 43 42 4 1 1 3 6 
16 2 0 22 20 11 7 0 6 7 6 1 1 31 28 
1 8 2 0 23 21 13 7 0 17 15 8 1 1 47 45 

1 3 0 8C 79 15 7 0 13 18 10 1 1 23 22 
3 3 0 65 64 0 8 0 82 79 12 1 1 14 14 
5 3 0 3 6 2 8 0 41 40 14 1 1 20 22 
? 3 f? 44 46 4 S 0 11 11 16 1 16 14 
9 3 0 54 57 6 8 0 14 14 18 1 1 10 7 

11 3 0 48 49 8 8 0 26 30 1 2 1 12 12 
13 3 G 0 3 10 8 0 16 16 3 2 1 43 40 
15 3 0 20 19 12. 8 0 8 12 5 2 1 57 54 
17 3 0 26 23 14 8 0 15 15 7 2 1 14 12 
19 3 0 23 19 1 9 0 40 41 9 2 1 28 26 
0 4 0 56 57 3 9 0 10 9 11 2 1 9 10 
2 4 0 150 147 5 9 0 10 11 13 2 1 5 8 
4 4 0 80 80 7 9 0 29 29 15 2 1 0 6 
6 4 0 17 18 9 9 0 27 23 17 2 1 14 12 
8 4 0 21 23 11 9 0 18 20 19 2 1 6 0 

10 4 0 58 57 13 9 0 20 18 0 3 1 0 0 
12 4 0 22 21 0 10 0 34 31 2 3 1 17 14 
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Table 31. CContinued) 

H K L FO FC H K L FO FC H K L FO FC 

4 3 1 46 44 3 8 1 15 16 0 2 2 34 35 
6 3 1 14 15 5 8 1 7 15 2 2 2 21 23 
8 3 1 0 6 7 8 1 13 8 4 2 2 24 25 

10 3 1 23 24 9 8 1 11 13 6 2 2 91 89 
12 3 1 6 8 11 8 1 0 1 8 2 2 34 83 
14 3 1 21 20 13 8 1 0 4 10 2 2 55 54 
16 3 1 10 6 0 9 1 0 0 12 2 2 29 29 
18 3 1 8 0 2 9 1 17 18 14 2 2 12 16 

1 4 1 34 34 4 9 1 14 13 16 2 2 17 18 
3 4 1 10 7 6 9 1 14 14 18 2 2 21 19 
5 4 1 13 11 8 9 1 8 4 I 3 2 65 65 
7 4 1 26 25 10 9 1 13 1 3 3 2 58 58 
9 4 1 12 9 12 9 1 0 0 5 3 2 6 13 

11 4 1 13 11 1 10 1 10 11 7 3 2 41 41 
13 4 1 0 9 3 to 1 5 8 9 3 2 52 50 
15 1 0 10 5 10 1 7 2 11 3 2 43 44 
17 4 1 0 1 7 10 1 0 0 13 3 2 0 3 

0 5 1 3 0 9 10 1 13 1 15 3 2 15 17 
2 5 1 39 40 11 10 1 3 7 17 3 2 23 21 
4 5 1 6 8 0 11 1 0 0 0 4 2 57 60 
6 5 1 19 19 2 11 1 0 7 2 4 2 118 119 
8 5 1 13 13 4 11 1 0 5 4 4 2 66 67 

10 5 1 12 13 6 11 1 0 2 6 4 2 5 17 
12 5 1 0 9 8 11 I 0 0 8 4 2 22 23 
14 5 1 9 2 1 12 1 0 3 10 4 2 49 51 
16 5 1 10 5 3 12 1 9 1 12 4 2 23 20 

1 6 1 11 9 0 0 2 410 402 14 4 2 5 17 
3 6 1 37 39 2 0 2 140 135 16 4 2 28 27 
5 6 1 1? 9 4 0 2 31 33 1 5 2 83 82 
7 6 1 10 1 6 0 2 65 62 3 5 2 87 92 
9 6 1 15 14 8 0 2 87 87 5 5 2 29 33 

11 6 1 4 4 10 0 2 40 40 7 5 2 33 35 
13 6 1 11 11 12 0 2 57 54 9 5 2 76 76 
15 6 1 13 1 14 0 2 38 34 11 5 2 49 53 17 6 1 12 3 16 0 2 19 18 13 5 2 21 17 

0 7 1 7 0 18 0 2 28 23 15 5 2 14 21 
2 7 1 16 15 1 1 2 164 157 17 5 2 19 19 
4 7 I 10 7 3 1 2 29 29 0 6 2 51 53 
6 7 1 13 15 5 1 2 83 81 2 6 2 56 56 
8 7 1 14 16 7 1 2 106 103 4 6 2 59 59 10 7 1 6 1 9 I 2 63 63 6 6 2 36 39 

12 7 I 15 2 11 I 2 38 37 8 6 2 72 74 14 7 1 12 3 13 1 2 44 45 10 6 2 61 60 
16 7 1 8 4 15 1 2 24 21 12 6 2 20 22 1 B 1 C 10 17 2 29 21 14 6 2 10 15 
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Table 31. CContinuedî 

H K l FO FC H K L FO FC H K L FO FC 

16 6 2 18 18 6 1 3 12 16 5 6 3 8 8 
1 7 2 45 45 8 1 3 25 27 7 6 3 0 1 
3 7 2 43 44 10 1 3 17 15 9 6 3 11 11 
5 7 2 47 45 12 1 3 0 9 11 6 3 0 3 
7 7 2 38 39 14 1 3 19 17 13 6 3 4 9 
9 7 2 37 38 16 1 3 3 11 15 6 3 12 1 

11 7 2 0 7 18 1 3 7 5 0 7 3 0 0 
13 7 2 11 13 1 2 3 a 6 2 7 3 11 10 
15 7 2 17 16 3 2 3 5 8 4 7 3 7 5 
0 8 2 67 68 5 2 3 27 26 6 7 3 9 11 
2 8 2 34 35 7 2 3 0 6 8 7 3 15 11 
4 8 2 9 11 9 2 3 14 17 10 7 3 3 1 
6 8 2 17 13 11 2 3 8 7 12 7 3 0 3 
6 8 2 25 27 13 2 3 8 6 14 7 3 0 3 

10 8 2 12 14 15 2 3 12 6 1 8 3 10 7 
12 8 2 3 11 17 2 3 0 9 3 8 3 15 13 
14 8 2 C 13 0 3 3 7 0 5 8 3 6 10 

1 9 2 37 37 2 3 3 3 3 7 8 3 0 6 
3 9 2 12 8 . 4 3 3 19 23 9 8 3 11 10 
5 9 2 7 9 6 3 3 7 10 11 8 3 7 0 
7 9 2 26 26 8 3 3 5 3 0 9 3 0 0 
9 9 2 19 20 10 3 3 16 18 2 9 3 14 13 

11 9 2 22 18 12 3 3 6 6 4 9 3 5 9 
0 10 2 27 27 14 3 3 17 14 6 9 3 11 10 
2 10 2 22 21 16 3 3 7 5 8 9 3 0 3 
4 10 2 18 13 1 4 3 18 19 10 9 3 0 1 
6 10 2 31 31 3 4 3 5 5 1 10 3 13 9 
8 10 2 24 24 5 4 3 8 6 3 10 3 0 7 

10 10 2 13 18 7 4 3 15 17 5 10 3 9 2 
1 11 2 29 31 9 4 3 9 6 7 10 3 11 1 
3 11 2 25 19 11 4 3 6 7 0 11 3 5 0 
5 11 2 15 19 13 4 3 0 7 2 11 3 8 6 
7 11 2 22 24 15 4 3 0 8 4 11 3 9 3 
1 0 3 C 0 17 4 3 0 1 0 0 4 203 194 
3 p 3 0 0 0 5 3 0 0 2 0 4 86 84 
5 c 3 0 0 2 5 3 26 23 4 0 4 28 30 
7 0 3 4 0 4 5 3 0 4 6 0 4 48 47 
9 0 3 0 0 6 5 3 11 12 8 0 4 56 57 

11 0 3 9 0 8 5 3 10 10 10 0 4 33 32 
13 0 3 0 0 10 5 3 9 10 12 0 4 40 37 
15 0 3 0 0 12 5 3 13 6 14 0 4 24 26 
17 0 3 12 0 14 5 3 11 2 16 0 4 18 14 

0 1 3 0 0 16 5 3 3 4 1 1 4 96 94 
2 1 3 16 17 1 6 3 7 4 3 1 4 28 28 4 1 3 6 2 3 6 3 22 25 5 1 4 51 51 
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31. CContinued.). 

K L FO FC H K L FO FC H K L FO FC 

1 4 64 65 3 7 4 26 30 8 3 5 0 1 
1 4 44 44 5 7 4 28 32 10 3 5 7 11 
1 4 29 27 7 7 4 27 30 12 3 5 10 4 
1 4 31 31 9 7 4 27 28 14 3 5 15 8 
1 4 14 16 11 7 4 17 6 1 4 5 15 9 
2 4 32 34 0 8 4 46 46 3 4 5 0 3 
2 4 27 25 2 8 4 21 24 5 4 5 0 4 
2 4 24 25 4 8 4 16 9 7 4 5 0 8 
2 4 56 56 6 8 4 13 11 9 4 5 0 3 
2 4 57 54 8 8 4 24 20 11 4 5 0 3 
2 4 38 37 10 8 4 14 11 13 4 5 11 5 
2 4 18 20 1 9 4 31 28 0 5 5 8 0 
2 4 16 12 3 9 4 9 7 2 5 5 12 10 
2 4 12 14 5 9 4 10 7 4 5 5 5 0 
3 4 42 43 7 9 4 21 19 6 5 5 0 5 
3 4 42 41 0 10 4 12 21 8 5 5 14 7 
3 4 16 17 2 10 4 12 17 10 5 5 7 7 
3 4 30 30 4 10 4 12 10 12 5 5 5 4 
3 4 34 35 l 0 5 5 0 1 6 5 7 1 
3 4 33 31 3 0 5 11 0 3 6 5 10 13 
3 4 0 3 5 0 5 0 0 5 6 5 0 6 
3 4 9 12 7 0 5 3 0 7 6 5 0 1 
4 4 45 45 9 0 5 0 0 9 6 5 0 8 
4 4 72 73 11 0 5 0 0 11 6 5 0 2 
4 4 41 44 13 0 5 0 0 0 7 5 12 0 
4 4 16 15 15 0 5 7 0 2 7 5 8 4 
4 4 18 20 0 1 5 0 0 4 7 5 0 3 
4 4 36 37 2 1 5 13 11 6 7 5 8 6 
4 4 14 17 4 1 5 0 3 e 7 5 11 6 
4 4 8 12 6 1 5 9 7 10 7 5 0 2 
5 4 •54 55 8 1 5 11 12 1 8 5 3 3 
5 4 59 60 10 I 5 3 7 3 6 5 10 7 
5 4 26 26 12 1 5 13 4 5 8 5 8 5 
5 4 23 26 14 1 5 10 10 7 8 5 8 3 
5 4 50 51 1 2 5 5 6 0 9 5 8 0 
5 4 36 38 3 2 5 10 1 2 9 5 11 8 
5 4 15 14 5 2 5 13 10 4 9 5 10 5 
6 4 37 40 7 2 5 6 3 0 0 6 90 92 
6 4 37 40 9 2 5 11 10 2 0 6 45 44 
6 4 39 41 11 2 5 0 3 4 0 6 18 19 
6 4 26 30 13 2 5 0 3 6 0 6 29 27 
6 4 50 50 0 3 5 0 0 8 0 6 35 34 
6 4 41 41 2 3 5 10 2 10 0 6 20 20 
6 4 8 16 4 3 5 5 7 12 0 6 25 22 
7 4 33 32 . 6 3 5 0 2 1 1 6 46 49 
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Table 31. (Continued) 

H K L FO FC H K L FO FC H K L FO FC 

3 1 6 23 20 4 4 6 19 25 7 0 7 0 0 
5 1 6 27 28 6 4 6 14 10 0 1 7 11 0 
7 1 6 36 36 8 4 6 19 13 2 1 7 0 8 
9 1 6 26 27 10 4 6 18 24 4 1 7 0 2 

11 1 6 21 16 1 5 6 34 33 6 1 7 3 3 
0 2 6 21 22 3 5 6 33 34 8 1 7 6 4 
2 2 6 21 18 5 5 6 21 17 1 2 7 11 5 
4 2 6 20 17 7 5 6 17 16 3 2 7 12 1 
6 2 6 31 31 9 5 6 29 29 5 2 7 0 3 
8 2 6 31 30 0 6 6 26 25 7 2 7 12 1 

10 2 f> 22 21 2 6 6 26 24 0 3 7 11 0 
1 3 6 23 24 4 6 6 23 24 2 3 7 0 1 
3 3 6 26 24 6 6 6 9 19 4 3 7 5 0 
5 3 6 11 13 1 7 6 15 20 6 3 7 3 1 
7 3 6 23 18 3 7 6 14 17 1 4 7 7 4 
9 3 6 26 21 5 7 6 15 19 3 4 7 10 2 

11 3 6 24 18 1 0 7 5 0 5 4 7 13 3 
0 4 6 23 26 3 0 7 0 0 0 5 7 13 0 
2 4 6 38 39 5 0 7 0 0 2 5 7 0 4 
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XIII. APPENDIX C 

Figure IT. Infrared, spectrum of PdCG)2 

Figure 18. Infrared spectrum of PdCDMG)2 

Figure 19• Infrared spectrum of Pd(Niox) 2  

Figure 20. Infrared spectrum of Pd(Heptox) 2  

Figure 21. Infrared spectrum of Pd(a-Benzil) 2  

Figure 22. Infrared spectrum of Pd(a-Furil) 2 
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Figure !?• Infrared spectrum of Pd(.G)2 
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Figure l8. Infrared spectrum of PdCDMGÏz 
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Figure 19. Infrared spectrum of PdfNiox); 
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Figure 20. Infrared spectrum of Pd(Heptox) 2  
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Pd(a-BENUILO(OXIME). 
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Figure 21. Infrared spectrum of Pdfa-Benziljz 
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HALOCARBON OIL MULL KBr PELLET KBr PELLET 

Pb(a-FURILDI0XIME)2 
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Figure 22. Infrared spectrum of Pdfa-Furlljz 
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